首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The progress in atom transfer radical polymerization (ATRP) provides an effective means for the design and preparation of functional membranes. Polymeric membranes with different macromolecular architectures applied in fuel cells, including block and graft copolymers are conveniently prepared via ATRP. Moreover, ATRP has also been widely used to introduce functionality onto the membrane surface to enhance its use in specific applications, such as antifouling, stimuli-responsive, adsorption function and pervaporation. In this review, the recent design and synthesis of advanced functional membranes via the ATRP technique are discussed in detail and their especial advantages are highlighted by selected examples extract the principles for preparation or modification of membranes using the ATRP methodology.  相似文献   

2.
The synthesis of nanoengineered materials with precise control over material composition, architecture and functionality is integral to advances in diverse fields, including biomedicine. Over the last 10 years, click chemistry has emerged as a prominent and versatile approach to engineer materials with specific properties. Herein, we highlight the application of click chemistry for the synthesis of nanoengineered materials, ranging from ultrathin films to delivery systems such as polymersomes, dendrimers and capsules. In addition, we discuss the use of click chemistry for functionalizing such materials, focusing on modifications aimed at biomedical applications.  相似文献   

3.
The design of efficient gene delivery vectors is a challenging task in gene therapy. Recent progress in living/controlled radical polymerizations (LRPs), in particular atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization providing a means for the design and synthesis of new polymeric gene vectors with well-defined compositions, architectures and functionalities is reviewed here. Polymeric gene vectors with different architectures, including homopolymers, block copolymers, graft copolymers, and star-shaped polymers, are conveniently prepared via ATRP and RAFT polymerization. The corresponding synthesis strategies are described in detail. The recent research activities indicate that ATRP and RAFT polymerization have become essential tools for the design and synthesis of advanced, noble and novel gene carriers.  相似文献   

4.
Monofunctional poly(ethylene oxide) macroinitiators with a molecular weight of 2000, 5000, 10?000, 20?000 and bifunctional poly(ethylene oxide) macroinitiators with a molecular weight of 20?000 were used for the atom transfer radical polymerisation (ATRP) of hydroxyethyl methacrylate (HEMA) in ethylene glycol as a solvent. The polymerisation proceeds in a controlled way up to high conversions. The molecular weight of the obtained copolymers increases linearly with conversion. A high rate of polymerisation was observed for the ATRP of HEMA. The effect of the poly(ethylene oxide) moiety on the course of the reaction is limited to solvating effects. The surface analysis of poly(ethylene oxide)/poly(hydroxyethyl methacrylate) block copolymers by means of atomic force microscopy in tapping mode using phase imaging shows phase separated domains with characteristic features related to the volume fraction of the respective blocks.  相似文献   

5.
Telechelic polymers by living and controlled/living polymerization methods   总被引:1,自引:0,他引:1  
Telechelic polymers, defined as macromolecules that contain two reactive end groups, are used as cross-linkers, chain extenders, and important building blocks for various macromolecular structures, including block and graft copolymers, star, hyperbranched or dendritic polymers. This review article describes the general techniques for the preparation of telechelic polymers by living and controlled/living polymerization methods; namely atom transfer radical polymerization, nitroxide mediated radical polymerization, reversible addition-fragmentation chain transfer polymerization, iniferters, iodine transfer polymerization, cobalt mediated radical polymerization, organotellurium-, organostibine-, organobismuthine-mediated living radical polymerization, living anionic polymerization, living cationic polymerization, and ring opening metathesis polymerization. The efficient click reactions for the synthesis of telechelic polymers are also presented.  相似文献   

6.
以mPEG-Br为大分子引发剂,CuBr/PMDETA为催化体系,采用原子转移自由基聚合法(ATRP)合成了两亲性嵌段共聚物聚乙二醇-聚丙烯酸叔丁酯(mPEG-b-PtBA),并采用FT-IR,1H-NMR和GPC等表征了聚合物的结构.考察了单体与引发剂的配比、反应时间、反应温度及催化剂与配体的比例等因素对产物的分子量...  相似文献   

7.
Reversible addition fragmentation chain transfer (RAFT) polymerization has made a huge impact in macromolecular design. The first block copolymers were described early on, followed by star polymers and then graft polymers. In the last five years, the types of architectures available have become more and more complex. Star and graft polymers now have block structures within their branches, or a range of different branches can be found growing from one core or backbone. Even the synthesis of hyperbranched polymers can be positively influenced by RAFT polymerization, allowing end group control or control over the branching density. The creative combination of RAFT polymerization with other polymerization techniques, such as ATRP or ring-opening polymerization, has extended the array of available architectures. In addition, dendrimers were incorporated either as star core or endfunctionalities. A range of synthetic chemistry pathways have been utilized and combined with polymer chemistry, pathways such as ‘click chemistry’. These combinations have allowed the creation of novel structures. RAFT processes have been combined with natural polymers and other naturally occurring building blocks, including carbohydrates, polysaccharides, cyclodextrins, proteins and peptides. The result from the intertwining of natural and synthetic materials has resulted in the formation of hybrid biopolymers. Following these developments over the last few years, it is remarkable to see that RAFT polymerization has grown from a lab curiosity to a polymerization tool that is now been used with confidence in material design. Most of the described synthetic procedures in the literature in recent years, which incorporate RAFT polymerization, have been undertaken in order to design advanced materials.  相似文献   

8.
Xiaoju Lu  Cheng Li  Shu Yang  Lifen Zhang 《Polymer》2007,48(10):2835-2842
At room temperature atom transfer radical polymerization (ATRP) of N-vinylpyrrolidone (NVP) was carried out using 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetra-azacyclo-tetradecane (Me6Cyclam) as ligand in 1,4-dioxane/isopropanol mixture. Methyl 2-chloropropionate (MCP) and copper(I) chloride were used as initiator and catalyst, respectively. The polymerization of NVP via ATRP could be mediated by the addition of CuCl2. The resultant poly(N-vinylpyrrolidone) (PNVP) has high conversion of up to 65% in 3 h, a controlled molecular weight close to the theoretical values and narrow molecular weight distribution between 1.2 and 1.3. The living nature of the ATRP for NVP was confirmed by the experiments of PNVP chain extension. With PNVP-Cl as macroinitiator and N-methacryloyl-N′-(α-naphthyl)thiourea (MANTU) as a hydrophobic monomer, novel fluorescent amphiphilic copolymers poly(N-vinylpyrrolidone)-b-poly(N-methacryloyl-N′-(α-naphthyl)thiourea) (PNVP-b-PMANTU) were synthesized by ATRP. PNVP-b-PMANTU copolymers were characterized by 1H NMR, GPC-MALLS and fluorescence measurements. The results revealed that PNVP-b-PMANTU presented a blocky architecture.  相似文献   

9.
Chitin (CT), the well-known natural biopolymer and chitosan (CS) (bio-based or “artificial polymer”) are non-toxic, biodegradable and biocompatible in nature. The advantages of these biomaterials are such that, they can be easily processed into different forms such as membranes, sponges, gels, scaffolds, microparticles, nanoparticles and nanofibers for a variety of biomedical applications such as drug delivery, gene therapy, tissue engineering and wound healing. Present review focuses on the diverse applications of CT and CS membranes and scaffolds for drug delivery, tissue engineering and targeted regenerative medicine. The chitinous scaffolds of marine sponges’ origin are discussed here for the first time. These CT based scaffolds obtained from Porifera possess remarkable and unique properties such as hydration, interconnected channels and diverse structural architecture. This review will provide a brief overview of CT and CS membranes and scaffolds toward different kinds of delivery applications such as anticancer drug delivery, osteogenic drug delivery, and growth factor delivery, because of their inimitable release behavior, degradation profile, mucoadhesive nature, etc. The review also provides an overview of the key features of CT and CS membranes and scaffolds such as their biodegradability, cytocompatibility and mechanical properties toward applications in tissue engineering and wound healing.  相似文献   

10.
Xiaoyi Sun  Xiaohua Huang  Qi-Feng Zhou 《Polymer》2005,46(14):5251-5257
The synthesis of ABC triblock copolymer poly(ethylene oxide)-block-poly(methyl methacrylate)-block-polystyrene (PEO-b-PMMA-b-PS) via atom transfer radical polymerization (ATRP) is reported. First, a PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of halo-terminated poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) diblock copolymers under ATRP conditions. Then PEO-b-PMMA-b-PS triblock copolymer was synthesized by ATRP of styrene using PEO-b-PMMA as a macroinitiator. The structures and molecular characteristics of the PEO-b-PMMA-b-PS triblock copolymers were studied by FT-IR, GPC and 1H NMR.  相似文献   

11.
Biodegradable polymers have been widely used and have greatly promoted the development of biomedical fields because of their biocompatibility and biodegradability. The development of biotechnology and medical technology has set higher requirements for biomedical materials. Novel biodegradable polymers with specific properties are in great demand. Biodegradable polymers can be classified as natural or synthetic polymers according to the source. Synthetic biodegradable polymers have found more versatile and diverse biomedical applications owing to their tailorable designs or modifications. This review presents a comprehensive introduction to various types of synthetic biodegradable polymers with reactive groups and bioactive groups, and further describes their structure, preparation procedures and properties. The focus is on advances in the past decade in functionalization and responsive strategies of biodegradable polymers and their biomedical applications. The possible future developments of the materials are also discussed.  相似文献   

12.
Poly(N-vinylcarbazole) (PNVK) is one of the extensively studied photoconductive polymers because of its wide ranges of applications. Through the reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthates (RAFT/MADIX) polymerizations, in this study we investigated the syntheses of PNVK-based block copolymers (BCPs) with styrene (St) and methyl methacrylate (MMA). A variety of difunctional haloester-xanthate inifers were prepared and subjected to sequential polymerizations through RAFT and ATRP. In the presence of small amounts of bromoxanthate inifers, the 1H NMR spectra showed nearly complete consumption of the NVK monomer, but without formation of PNVK. The bromoxanthate inifer could act as acidic moieties that protonated the highly basic NVK monomer. Through 1H NMR and MALDI-TOF spectroscopic analyses, the structures of byproducts were indentified and a plausible mechanism for their formation was proposed. Alternatively, RAFT/MADIX polymerizations of NVK with two chloroxanthate inifers S-[1-methyl-4-(6-chloropropionate)ethyl acetate] O-ethyl dithiocarbonate and S-[1-methyl-4-(6-chloroisobutyrate)ethyl acetate] O-ethyl dithiocarbonate) provided first-order kinetic plots and well-controlled PNVK-Cl MIs (Mn ≈ 6000–40,000; Mw/Mn < 1.35). Using a suitable ATRP-initiating groups and optimization of the reaction conditions, the BCPs PNVK-b-PSt (Mn ≈ 4900–12,800; Mw/Mn < 1.5) and PNVK-b-PMMA (Mn ≈ 46,000–100,000; Mw/Mn < 1.35) were obtained.  相似文献   

13.
Grafting poly(methyl methacrylate) or PMMA from natural rubber (NR) using ATRP process, NR has to be transformed into bromoalkyl‐functionalized NR (NRBr) acting as ATRP macroinitiator. The NRBr was prepared by two‐step chemical modification i.e., epoxidation and epoxide ring opening reaction using a nucleophile containing bromine atom such as 2‐bromopropionic acid ( A1 ) and 2‐bromo‐2‐methylpropionic acid ( A2 ). The fixation of A1 and A2 on 4‐methyl‐4‐octene, a model representing one repeat unit of NR, modified by epoxidation was prior studied and it was found that the resulting addition products from A2 using as ATRP initiator for MMA gave a better control of M n,exp and low PDI of PMMA than that from A1 . Then, the NR was transformed into ATRP rubber macroinitiator via epoxidation, followed by epoxide ring addition with only A2 . 1H NMR was employed to determine the amount of A2 addition units on NR, which is considered to be the same amount of grafting sites for ATRP of MMA. The grafting of PMMA was then successfully carried out from the NR backbone by ATRP process. The PMMA grafts of the NR‐g‐PMMA were indeed linked to the NR backbone via ester linkage of the A2 unit. The PMMA grafts could be cleaved from the NR backbone by acid hydrolysis, while PMMA grafting by other conventional radical reaction could not be done. Then, the average MW of PMMA grafts after separation using acetone extraction was evaluated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
POSS/PMMA composite was synthesized by atom transfer radical polymerization (ATRP) at 110 °C using commercial POSSCl as an initiator and CuCl/2,2′-bipyridine as catalyst system. The structures of POSS/PMMA and POSSCl were characterized by Fourier transfer infrared spectroscopy, Nuclear magnetic resonance spectroscopy, Ger permeation chromatography, X-ray diffraction and X-ray photoelectron spectroscopy, which confirmed that Si–Cl bond on POSS cage could successfully initiate the ATRP of methyl methacrylate, so there is only one POSS unit in a PMMA chain. The thermal properties of POSS/PMMA were investigated by Differential scanning calorimetry and Thermogravimetric analysis, the results show that the incorporation of POSS cage results in the enhancement of the glass transition temperature and the decomposition temperature of PMMA, which is mainly attributed to the mono-dispersion of POSS in PMMA matrix at molecular lever.  相似文献   

15.
Zhongyu Li 《Polymer》2006,47(16):5791-5798
A novel well-defined amphiphilic graft copolymer of poly(ethylene oxide) as main chain and poly(methyl acrylate) as graft chains is successfully prepared by combination of anionic copolymerization with atom transfer radical polymerization (ATRP). The glycidol is protected by ethyl vinyl ether first, then obtained 2,3-epoxypropyl-1-ethoxyethyl ether (EPEE) is copolymerized with EO by initiation of mixture of diphenylmethyl potassium and triethylene glycol to give the well-defined poly(EO-co-EPEE), the latter is deprotected in the acidic conditions, then the recovered copolymer [(poly(EO-co-Gly)] with multi-pending hydroxyls is esterified with 2-bromoisobutyryl bromide to produce the ATRP macroinitiator with multi-pending activated bromides [poly(EO-co-Gly)(ATRP)] to initiate the polymerization of methyl acrylate (MA). The object products and intermediates are characterized by NMR, MALDI-TOF-MS, FT-IR, and SEC in detail. In solution polymerization, the molecular weight distribution of the graft copolymers is rather narrow (Mw/Mn < 1.2), and the linear dependence of Ln [M0]/[M] on time demonstrates that the MA polymerization is well controlled.  相似文献   

16.
    
In continuation of earlier investigations of polymer–ferrocene conjugates for biomedical applications, this article deals with conjugates prepared by N-acylation of linear, amine-functionalized polyaspartamide carriers with 4-ferrocenylbutanoic acid. Acylation is brought about both by mediation of HBTU coupling agent and by the N-hydroxysuccinimide active ester method. The polymeric carriers contain oligo- or poly(ethylene oxide) side chains introduced here for enhancement of water solubility. The longer side chains, in addition, are to impart such biomedically important properties as increased resistance to uptake by the reticuloendothelial system and to protein binding, extended circulation life time, and lowered immunogenicity. The conjugates comprise from 10 to 25 mol% ferrocenylated subunits, corresponding to ca. 2–5% Fe by mass. Freshly prepared and isolated in the solid state, they dissolve smoothly in aqueous media, with upper concentration limits (>0.2g/ml) dictated solely by their viscosity behavior. The conjugates are of interest in biomedical applications.  相似文献   

17.
Hu Hui  Fan Xiao-dong  Cao Zhong-lin 《Polymer》2005,46(22):9514-9522
Novel dendrimer derivatives combining the temperature- and pH-sensitivities are synthesized. At first, polyamidoamine (PAMAM) dendrimers with generations 1-5 are synthesized by the reaction of ethylenediamine with methyl acrylate, and then the dendrimers are acylated by chloroacetyl chloride to obtain PAMAM-Cl, which can act as a macroinitiator for further synthesizing functional dendrimers. For fulfilling this goal, the polymers consisting of a dendritic PAMAM core and poly(N,N-dimethylaminoethyl methacrylate) (PDMA) shell are synthesized by atom transfer radical polymerization (ATRP). Their macromolecular structures are characterized by FTIR, 1H NMR, DSC and particle size analyses, and their aqueous solutions are inspected by UV spectroscopy for understanding their thermo- and pH-sensitivities. The results show that novel dendrimer derivatives exhibit clearly thermo- and pH-respondings in accordance with the change of the environment. Using chlorambucil (CLB) as a model drug, the behaviors of the controlled drug release from polymers with different average graft length of PDMA are studied. The results indicate that the rate of the drug release can be effectively controlled by the pH value.  相似文献   

18.
Meizhen Yin  Wolf D. Habicher 《Polymer》2005,46(10):3215-3222
The polymerization by ATRP of hydroxy and amino functional acrylates and methacrylates with tert-butyldimethylsilyl (TBDMS) or tert-butyloxycarbonyl (BOC) protective groups has been studied for the first time achieving high control over molecular weight and polydispersity. Detailed investigation of the ATRP of 2-{[tert-butyl(dimethyl)silyl]oxy}ethyl acrylate (M2b) in bulk and 2-[(tert-butoxycarbonyl)amino]ethyl 2-methylacrylate (M3a) in diphenyl ether (DPE) showed that the type of ligand plays an important role on either the polymerization rate or the degree of control of the polymerization. Among the ligands used, N,N,N,′NN″-pentamethyl diethylenetriamine (PMDETA) was the most suitable ligand for ATRP of all functional acrylates and methacrylates. The kinetics of M2b and M3a polymerization using PMDETA as a ligand was reported and proved the living character of the polymerization. Well-defined block copolymers based on a halogen terminated polystyrene (Pst) macroinitiator and the functional acrylate and methacrylate monomers were successfully synthesized by ATRP, and subsequent deprotection of the protective groups from the acrylate or methacrylate segment afforded amphiphilic block copolymers with a specific solubility behavior.  相似文献   

19.
Here, the dendritic chloric poly(benzyl ether) (G1-Cl, G2-Cl and G3-Cl) as the macroinitiator for the controlled atom transfer radical polymerization (ATRP) of methyl methylacrylate was investigated. Polymers obtained were characterizated by GPC, 1H NMR, FT-IR, TGA and DSC. These dendritic-linear block polymers that consist of linear and dendritic segments have very good solubility in common organic solvents at room temperature. In a selective solvent (THF/H2O), polymers can self-assembled into the micelles that have a spherical morphology in shape due to the lowest of the surface energies.  相似文献   

20.
AB amphiphilic comb-like block copolymers of poly(oligo[ethylene glycol] methyl ether methacrylate) and polydimethylsiloxane were synthesised with a methodology based on atom transfer radical polymerization (ATRP). The anionic ring opening polymerisation of hexamethylcyclotrisiloxane followed by reaction with 3-(chlorodimethylsilyl) propyl 2-bromo-2-methylpropanoate propyldimethylchlorosilane gave suitable macroinitiators for the ATRP of oligo[ethylene glycol] methyl ether methacrylate. The latter synthetic procedure was optimised by performing a number of syntheses varying the reaction solvent, catalytic complex and the temperature used. Copolymers with relatively high polydispersity indices (Mw/Mn>1.3) could be synthesised at room temperature by employing a Cu(I)Br:N,N,N′,N′,N″-pentamethyldiethylenetriamine complex in n-propanol with Cu(II)Br. The optimum reaction conditions employed a Cu(I)Cl:N-(n-propyl)-2-pyridyl(methanimine) complex with an n-propanol/water mixture or toluene as solvent at 90 °C. This gave block copolymers of the desired molecular weights and polydispersity indices of less than 1.1. The block copolymers were characterised with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号