首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperglycemia in diabetes mellitus has been shown to activate diacylglycerol (DAG)-protein kinase C (PKC) pathway in the vascular tissues, possibly altering vascular function. We have characterized the effects of vitamin E (d-alpha-tocopherol) on activation of PKC and DAG levels in retinal tissues of diabetic rats, and correlated its effects to retinal hemodynamics using video-based fluorescein angiography (VFA). Comparing streptozotocin-induced diabetic rats to controls, membranous PKC specific activities were increased by 71% (p < 0.05). Western blot analysis showed that the membranous PKC beta II isoform was significantly increased by 133 +/- 45% (p < 0.05). Intraperitoneal injection of d-alpha-tocopherol (40 mg/kg) every other day prevented the increases in membranous PKC specific activity and PKC beta II protein shown by immunoblots. Similar to PKC activities, total DAG levels were increased in the retina and were normalized by d-alpha-tocopherol treatment. Physiologically, abnormalities of retinal blood hemodynamics, as measured using VFA, which previously have been reported to be associated with increases of DAG and PKC levels in the diabetic rats, were prevented by d-alpha-tocopherol treatment in diabetic rats. The direct effect of d-alpha-tocopherol on total DAG and [3H]-palmitate incorporation into DAG were also examined using cultured bovine retinal endothelial cells (REC). Exposure of REC to 22 mM glucose for three days increased total DAG and [3H]-palmitate labeled DAG levels by 35 +/- 8% and 50 +/- 8%, respectively (p < 0.05). The presence of d-alpha-tocopherol (50 micrograms/ml) prevented the increase of both total DAG and [3H]-palmitate labeled DAG levels in cells exposed to 22 mM glucose. These findings suggested that the mechanism of the d-alpha-tocopherol's effect appears to be mediated by the normalization of the hyperglycemia-induced activation of the DAG-PKC pathway which leads to the normalization of abnormal retinal blood flow seen in diabetes mellitus.  相似文献   

2.
Because d-alpha-tocopherol (vitamin E) has been shown to decrease diacylglycerol (DAG) levels and prevent the activation of protein kinase C (PKC), which is associated with retinal and renal dysfunctions in diabetes, the study presented here characterized the effect of d-alpha-tocopherol treatment to prevent glomerular hyperfiltration and increased albuminuria as well as PKC activities in streptozotocin (STZ)-induced diabetic rats. Two weeks after the induction of diabetes, total DAG content and PKC activity in glomeruli were significantly increased in diabetic rats by 106.4 +/- 16.8% and 66.4 +/- 8.4%, respectively, compared with control rats. Intraperitoneal injection of d-alpha-tocopherol (40 mg/kg of body weight) every other day prevented the increases in total DAG content and PKC activity in glomeruli of diabetic rats. Glomerular filtration rate (GFR) and filtration fraction (FF) were significantly elevated to 4.98 +/- 0.34 mL/min and 0.36 +/- 0.05, respectively, in diabetic rats, compared with 2.90 +/- 0.14 mL/min and 0.25 +/- 0.02, respectively, in control rats. These hemodynamic abnormalities in diabetic rats were normalized to 2.98 +/- 0.09 mL/min and 0.24 +/- 0.01, respectively, by d-alpha-tocopherol. Albuminuria in 10-wk diabetic rats was significantly increased to 9.1 +/- 2.2 mg/day compared with 1.2 +/- 0.3 mg/day in control rats, whereas d-alpha-tocopherol treatment improved albumin excretion rate to 2.4 +/- 0.6 mg/day in diabetic rats. To clarify the mechanism of d-alpha-tocopherol's effect on DAG-PKC pathway, the activity and protein levels of DAG kinase alpha and gamma, which metabolize DAG to phosphatidic acid, were examined. Treatment with d-alpha-tocopherol increased DAG kinase activity in the glomeruli of both control and diabetic rats, by 22.6 +/- 3.6% and 28.5 +/- 2.3% respectively, although no differences were observed in the basal DAG kinase activity between control and diabetic rats. Because immunoblotting studies did not exhibit any difference in the protein levels of DAG kinase alpha and gamma, the effect of d-alpha-tocopherol is probably modulating the enzyme kinetics of DAG kinase. These findings suggest that the increases in DAG-PKC pathway play an important role for the development of glomerular hyperfiltration and increased albuminuria in diabetes and that d-alpha-tocopherol treatment could be preventing early changes of diabetic renal dysfunctions by normalizing the increases in DAG and PKC levels in glomerular cells.  相似文献   

3.
Altered functions of mesangial cells (MCs) induced by high glucose levels are thought to play an important role in the pathogenesis of diabetic nephropathy. We investigate whether D-alpha-tocopherol (Toc), an antioxidant, can prevent malfunction of cultured human MCs induced by high-glucose media. Incubating MCs with 33 mmol/L glucose caused increased lipid peroxide (LPO) levels, disturbed cell replication, enhanced cytotoxicity, enhanced activity of the diacylglycerol (DAG)-protein kinase C (PKC) pathway, and overproduction of fibronectin and eicosanoids (6-keto prostaglandin F1 alpha [PGF1 alpha] and thromboxane B2 [TXB2]). The amount of LPO in MCs grown in 5 mmol/L glucose was reduced by the addition of Toc in a dose-dependent manner. Since the maximum effect of Toc on decreasing LPO was achieved at a concentration of 100 mumol/L, this dose was selected for the following experiments. Addition of Toc prevented increased LPO levels and [51Cr]-release from MCs induced by high-glucose media without affecting cell number. Toc decreased the total DAG level and PKC activity in membrane fractions in MCs cultured at both 5 and 33 mmol/L glucose. Furthermore, glucose-induced overproduction of fibronectin and eicosanoids from MCs was completely abolished by Toc. These results strongly suggest that Toc ameliorates glucose-induced malfunctions of MCs in vitro.  相似文献   

4.
Previous work has shown that PMA and diacylglycerols, activators of protein kinase C (PKC) can suppress cell polarity and locomotor activity of Walker carcinosarcoma cells in vitro, suggesting that PKC activation may result in a stop signal for tumor cell locomotion. This hypothesis was further analysed. The present results show that the DAG kinase inhibitor, R 59022, suppressed tumor cell polarity and strongly inhibited cell locomotion at a concentration of 10(-4), thus supporting the earlier finding that an increased availability of DAGs can suppress the locomotor activity of Walker carcinosarcoma cells. The results support the stop-signal hypothesis of PKC activation insofar as DAG kinase inhibition mimics the effects of DAGs and PMA. In order to clarify further the effects of protein kinase modulation on locomotion, we now extended our studies on structurally different inhibitors of protein kinases. In contrast to H-7, HA-1004 had no effect on cell polarity and did not reduce cell locomotion in the presence of colchicine, but reduced the proportion of spontaneously locomoting cells by 70% at 3 x 10(-4) M. Polymyxin B suppressed cell polarity and locomotion only at concentrations that proved to be toxic. Tamoxifen had no significant effect on cell polarity and locomotor activity. Sangivamycin did not suppress cell polarity and spontaneous locomotion at a concentration range of 10(-9) M to 10(-4) M. However, at 10(-4) M it decreased the proportion of migrating, colchicine-stimulated cells by 50%. The diverse responses to structurally different PKC inhibitors may be explained by their limited and variable specificity for PKC and different mechanisms of action on PKC.  相似文献   

5.
The association of protein kinase C (PKC) with membranes was found not to be specific for phosphatidyl-L-serine (PS). In particular, a synthetic phospholipid, dansyl-phosphatidylethanolamine, proved to be fully functional in the association of PKC with lipid bilayers and in mediating the interaction of this enzyme with diacylglycerol. Dansyl-phosphatidylethanolamine was also able to activate the enzyme in a Ca2+-dependent fashion. Differences in the ability to bind and activate PKC observed for an array of anionic lipids were not larger than alterations caused by changes in acyl chain composition. Thus, although different lipids interact to different extents with PKC, there are no specific binding sites for the PS headgroup on the enzyme. We found that lipids with a greater tendency to form inverted phases increased the binding of PKC to bilayers. However, these changes in lipid structure cannot be considered separately from the miscibility of lipid components in the membrane. For pairs of lipids with similar acyl chains, the dependence on PS concentration is sigmoidal, while for dissimilar acyl chains there is much less dependence of binding on PS concentration. The results can be explained in terms of differences in the lateral distribution of components in the membrane.  相似文献   

6.
We found that many spontaneous human tumors exhibit increased levels of endocellular diacylglycerol (DAG) which is synthesized de novo as a byproduct of glycolysis. It has been shown that DAG mimics phorbol esters as a full tumor promoter in mouse skin carcinogenesis. A short term DAG treatment activates protein kinase C (PKC), while a long term "chronic" treatment down-regulates PKC. We show here that chronic treatment of human fibroblast with DAG induces p53 down-regulation and inhibition of p53 functional activity, and protection from UV-induced apoptosis. As PKC phosphorylation is necessary for p53 functional activity, we propose that chronic DAG treatment mimics the same event occurring in vivo for the effect of glycolysis in tumor progression.  相似文献   

7.
Using an atomic force microscope, supported bilayers of saturated phosphatidylcholine (in the gel state) containing various amounts of gramicidin A (gA) were imaged in aqueous solutions and at room temperature. gA clusters were directly observed for the first time under these conditions. It was found that, at a lower gA concentration, gA aggregated into domains, composed of small clusters along with a considerable amount of lipids. This basic aggregation unit, most likely a hexamer, remained the same for acyl chain lengths from 14 to 18 carbons. These small clusters were observed to form elongated aggregates (line type) but never into extended pure gA domains. When gA concentrations were increased, for bilayers with 16 carbons or less, gA aggregated into larger domains but the basic unit remained separated by lipid molecules. At about 5 mol % gA, a percolation-like transition occurred at which the line type aggregates were connected to each other. However, for bilayers with more than 16 carbons, multiple lamellar structures were formed at higher gA fractions and the top layer had a ripple-like surface morphology. The molecular mechanism for the formation of these peculiar structures remains to be elucidated.  相似文献   

8.
The product of the c-kit proto-oncogene, denoted Kit/SCF-R, encodes a tyrosine kinase receptor for stem cell factor (SCF). Kit/SCF-R induces proliferation, differentiation or migration of cells within the hematopoietic, gametogenic and melanogenic lineages at different developmental stages. We report here that protein kinase C (PKC) mediates phosphorylation of Kit/SCF-R on serine residues in response to SCF or PMA in intact cells. The phosphorylation inhibits SCF-induced tyrosine autophosphorylation of Kit/SCF-R. In vitro studies showed that PKC phosphorylated the Kit/SCF-R directly on serine residues and inhibited autophosphorylation of Kit/SCF-R, as well as its kinase activity towards an exogenous substrate. The PKC-induced phosphorylation did not affect Kit/SCF-R ligand binding affinity. Inhibition of PKC led to increased SCF-induced tyrosine autophosphorylation, as well as increased SCF-induced mitogenicity. In contrast, PKC was necessary for SCF-induced motility responses, including actin reorganization and chemotaxis. Our data suggest that PKC is involved in a negative feedback loop which regulates the Kit/SCF-R and that the activity of PKC determines whether the effect of SCF will be preferentially mitogenic or motogenic.  相似文献   

9.
High intracellular 1,2,-sn-diacylglycerol (DAG) usually activates protein kinase C (PKC). In choline-deficient Fischer 344 rats, we previously showed that fatty liver was associated with elevated hepatic DAG and sustained activation of PKC. Steatosis is a sequelae of many liver toxins, and we wanted to determine whether fatty liver is always associated with accumulation of DAG with activation of PKC. Obese Zucker rats had 11-fold more triacylglycerol in their livers and 2-fold more DAG in their hepatic plasma membrane than did lean control Zucker rats. However, this increased diacylglycerol was not associated with translocation or activation of PKC in hepatic plasma membrane (activity in obese rats was 897 pmol/mg protein X min(-1) vs. 780 pmol/mg protein X min(-1) in lean rats). No differences in PKC isoform expression were detected between obese and lean rats. In additional studies, we found that choline deficiency in the Zucker rat did not result in activation of PKC in liver, unlike our earlier observations in the choline deficient Fischer rat. This dissociation between fatty liver, DAG accumulation and PKC activation in Zucker rats supports previous reports of abnormalities in PKC signaling in this strain of rats.  相似文献   

10.
We have previously shown that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in growth zone chondrocyte (GC) differentiation and that this effect is mediated by protein kinase C (PKC). The aim of the present study was to identify the signal transduction pathway used by 1,25(OH)2D3 to stimulate PKC activation. Confluent, fourth passage GC cells from costochondral cartilage were used to evaluate the mechanism of PKC activation. Treatment of GC cultures with 1,25(OH)2D3 elicited a dose-dependent increase in both inositol-1,4,5-trisphosphate and diacylglycerol (DAG) production, suggesting a role for phospholipase C and potentially for phospholipase D. Addition of dioctanoylglycerol to plasma membranes isolated from GCs increased PKC activity. Neither pertussis toxin nor choleratoxin had an inhibitory effect on PKC activity in control or 1,25(OH)2D3-treated GCs, indicating that neither Gi nor Gs proteins were involved. Phospholipase A2 inhibitors, quinacrine, OEPC (selective for secretory phospholipase A2), and AACOCF3 (selective for cytosolic phospholipase A2), and the cyclooxygenase inhibitor indomethacin decreased PKC activity, while the phospholipase A2 activators melittin and mastoparan increased PKC activity in GC cultures. Arachidonic acid and prostaglandin E2, two downstream products of phospholipase A2 action, also increased PKC activity. These results indicate that 1,25(OH)2D3-dependent stimulation of PKC activity is regulated by two distinct phospholipase-dependent mechanisms: production of DAG, primarily via phospholipase C and production of arachidonic acid via phospholipase A2.  相似文献   

11.
We studied the capacity of doxorubicin encapsulation in liposomes of various lipid compositions to circumvent multidrug resistance in several variants of the C6 rat glioblastoma cell line in culture, and to inhibit azidopine binding to membranes isolated from these cells. Three formulations of liposomes were prepared: (a) phosphatidylcholine (PC)/phosphatidylserine (PS)/cholesterol (cho) at a 9/24 ratio; (b) PC/cardiolipin (CL)/cho at 10/1/4 ratio; (c) dipalmitoylphosphatidylcholine (DPPC)/cho at 11/4 ratio. Unloaded liposomes presented no cytotoxicity against sensitive or resistant cells. Doxorubicin encapsulated in PC/PS/cho and PC/CL/cho liposomes had a cytotoxic activity close to that of free doxorubicin, whereas doxorubicin encapsulated in DPPC/cho liposomes was significantly less active than free doxorubicin in sensitive as well as in two of the three multidrug resistant cell lines, and as active as free doxorubicin in the third one. Free doxorubicin was able to decrease 50% of [3H]azidopine photolabelling to P-glycoprotein at a concentration of 40 microM; doxorubicin encapsulated in PC/CL/cho or PC/PS/cho liposomes was able to inhibit [3H]azidopine binding similarly as free drug, whereas doxorubicin encapsulated in DPPC/cho liposomes had no significant effect on this parameter. Unloaded liposomes of either lipid composition had no effect on [3H]azidopine binding. Together with physical studies performed in parallel on doxorubicin trapping in liposomes (J Liposome Res 1993, 3, 753-766), these results suggest that doxorubicin leaked out of fluid liposomes (PC/PS/cho or PC/CL/cho), whereas rigid liposomes (DPPC/cho) were able to sequester the drug more efficiently. In that case, however, no availability of the drug to the cells was possible and only a weak cytotoxicity was exhibited, especially without any favourable effect on multidrug resistance. In conclusion, no reversal of doxorubicin resistance was found to occur through liposomal encapsulation of the drug.  相似文献   

12.
We have used sonicated liposomes of phosphatidylcholine (PC), sphingomyelin (SM), or a mixture of cholesterol (chol) and PC to investigate the role of cellular lipid composition in Fc epsilon RI-mediated stimulation of RBL-2H3 cells. Overnight treatment with either PC or SM liposomes causes a substantial enhancement of antigen-stimulated degranulation and phospholipase A2 activity, whereas treatment with a PC/chol mixture results in partial inhibition of the antigen-stimulated response. The most consistent change in the cellular lipid composition that results from the PC and SM liposome treatments is an approximate 40% decrease in the chol/phospholipid (PL) ratio. The lipid treatments do not alter degranulation stimulated by AlF4- or by Ca2+ ionophore in the presence or absence of PMA, suggesting that lipid alteration affects a receptor-specific signaling process. The lipid treatments do not appear to alter antigen-stimulated tyrosine phosphorylation or Ca2+ mobilization. Possible involvement of protein kinase C (PKC) activation in the signal-enhancing effect of the PL treatments was investigated by using calphostin C and phorbol-12-myristol-13-acetate (PMA) to inhibit PKC activity and degranulation in RBL-2H3 cells. Both SM and PC treatment restore the antigen-mediated degranulation response that is inhibited by long-term treatment (> or = 16 h) with 100 nM PMA or short-term treatment (10 min) with 5 microM calphostin C. The results indicate that a decreased chol/PL ratio facilitates or enhances the receptor-mediated activation of a PKC-like pathway that plays an important role in Fc epsilon RI-stimulated degranulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We examined the possibility that protein kinase C (PKC) is chronically activated and may contribute to impaired glycogen synthesis and insulin resistance in soleus muscles of hyperinsulinemic type II diabetic Goto-Kakizaki (GK) rats. Relative to nondiabetic controls, PKC enzyme activity and levels of immunoreactive PKC-alpha, beta, epsilon, and delta were increased in membrane fractions and decreased cytosolic fractions of GK soleus muscles. In addition, PKC-theta levels were decreased in both membrane and cytosol fractios, whereas PKC-zeta levels were not changed in either fraction in GK soleus muscles. These increases in membrane PKC (alpha, beta, epsilon, and delta) could not be accounted for by alterations in PKC mRNA or total PKC levels but were associated with increases in membrane diacylglycerol (DAG) and therefore appeared to reflect translocative activation of PKC. In evaluation of potential causes for persistent PKC activation, membrane PKC levels were decreased in soleus muscles of hyperglycemic streptozotocin (STZ)-induced diabetic rats; thus, a role for simple hyperglycemia as a cause of PKC activation in GK rats was not evident in the STZ model. In support of the possibility that hyperinsulinemia contributed to PKC activation in GK soleus muscles, we found that DAG levels were increased, and PKC was translocated, in soleus muscles of both (1) normoglycemic hyperinsulinemic obese/aged rats and (2) mildly hyperglycemic hyperinsulinemic obese/Zucker rats. In keeping with the possibility that PKC activation may contribute to impaired glycogen synthase activation in GK muscles, phorbol esters inhibited, and a PKC inhibitor, RO 31-8220, increased insulin effects on glycogen synthesis in soleus muscles incubated in vitro. Our findings suggested that: (1) hyperinsulinemia, as observed in type II diabetic GK rats and certain genetic and nongenetic forms of obesity in rats, is associated with persistent translocation and activation of PKC in soleus muscles, and (2) this persistent PKC activation may contribute to impaired glycogen synthesis and insulin resistance.  相似文献   

14.
Phospholipase D (PLD) is widely used for the transformation of phospholipids, which is preferably performed in aqueous-organic emulsion systems. The influence of the organic solvent on the reaction rates has been studied on the hydrolysis of phosphatidylcholine (PC) and its transesterification with glycerol by two types of PLD (cabbage and Streptomyces sp.). The initial rates determined by quantitative HPTLC show great differences in dependence on the solvent used with a similar tendency for both reactions and both PLDs. Since the polymorphism of the PC aggregates was assumed to be responsible for these effects, the critical concentration of micelle formation, the size of the aggregates, the water content of the organic phase, and the interfacial tension were determined in the different reaction systems. As result the interfacial pressure in the reaction systems influencing the package density of the PC aggregates is suggested to regulate the enzymatic activity.  相似文献   

15.
The effect of different phospholipids on the kinetic behavior of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis toward PI vesicles has been investigated. Cosonicated PC/PI vesicles displayed enhanced hydrolysis of PI when less than 0. 20 mole fraction PC was incorporated into the vesicle; higher mole fractions of PC led to a decrease from the maximum activity mimicking surface dilution of substrate. Since the PC could affect PI-PLC binding to vesicles, the effect of separate PC vesicles on enzymatic hydrolysis of PI vesicles was examined. Separate phosphatidylcholine vesicles were found to activate PI-PLC-catalyzed cleavage of PI vesicles up to 7-fold. The activation was completely abolished when the PC vesicle was composed of cross-linked molecules. In the absence of enzyme, fluorescence resonance energy transfer studies did not detect any fusion between PI and PC vesicles if the total lipid concentration was below 2 mM. Higher total lipid concentrations (>20 mM) increased PC transfer between PC and PI vesicles, producing a PI vesicle population with small amounts of PC in the outer monolayer. This suggested that the activation of PI-PLC toward PI vesicles reflects the time scale of transfer of PC from PC vesicles to PI vesicles. Cosonicated PC/PI vesicles provide a measure of enzyme activity versus mole fraction of PC that can be used to estimate the extent of vesicle exchange or fusion between separate vesicle pools. The effects of other phospholipid vesicles on PI-PLC hydrolysis of PI were also examined; zwitterionic lipids were activators while anionic phospholipids inhibited activity. The results indicated that PC molecules in the PI interface allosterically bind to PI-PLC and help anchor enzyme in a more active conformation to the PI interface.  相似文献   

16.
The role of hydration in the catalytic activity and membrane binding of rat brain protein kinase C (PKC) was investigated by modulating the activity of water with polyethylene glycols with molecular weights of 1000-20000 and dextran with a molecular weight of 20000. These polymers create an osmotic stress due to their exclusion from hydration shells and crevices on proteins, causing dehydration. Polymers larger than 1000 caused an activation of the PKC-catalyzed phosphorylation of histone, while PEG 1000 had no significant effect. The extent of activation by PEG and dextran 20000 was larger than that of PEG 6000 or 8000 when vesicles were composed of 1:1 POPS/POPC, suggesting the presence of at least two distinct regions of exclusion on PKC: one inaccessible to PEGs larger than 1000 and the other inaccessible only to PEGs of > 10000. The extent of activation was dependent on the composition of the vesicles used. If basal activity (without PEG) was low (e.g. with low PS content in membranes), then the extent of activation was similar for all polymers larger than 1000. Binding of PKC to membranes containing 50 mol % PS was unaffected by PEG 6000 but was inhibited by PEG 20000. At a low PS content of 10%, both PEG 6000 and 20000 inhibited binding. This suggests that PKC becomes hydrated upon binding to membranes. Under conditions in which all of the enzyme is membrane-bound, both Km and Vmax for the phosphorylation of histone increased linearly with osmotic stress induced by PEG 6000. Thus, PKC becomes hydrated with 2311 +/- 476 water molecules upon binding of histone and is dehydrated by 1349 +/- 882 water molecules in going to the transition state. Km and Vmax for phosphorylation of the MARCKS peptide also increase with osmotic stress induced by PEG 6000. When protamine sulfate was used as a substrate (cofactor-independent), Vmax for the reaction was unaffected, but Km decreased with osmotic pressure (with PEG 6000), suggesting that PKC becomes dehydrated upon binding protamine. Similar results were found with a peptide substrate derived from the pseudosubstrate site of PKC epsilon. Since dextran, a polymer unrelated in structure to PEG, could cause a similar activation of PKC, the effects seen are likely due to osmotic stress and not to specific binding of PEG to PKC. Also, results obtained with PE-linked PEG were opposite to those with free PEG. PE-linked PEGs of 2000 and 5000 caused an inhibition of PKC-catalyzed phosphorylation of histone when present in membranes. If a specific interaction occurred with PEG, this would be expected to occur even with PE-PEG. The effects observed with free PEG are also independent of ionic strength. Free PEG had no effect on the bilayer to hexagonal phase transition temperature of DEPE membranes, suggesting that the effects on PKC activity are not a consequence of changes in membrane properties at the osmotic pressures used.  相似文献   

17.
The interaction of urokinase-type plasminogen activator (u-PA) or of u-PA amino-terminal fragment (u-PA-ATF) with the cell surface receptor (u-PAR) was found to stimulate an increase of glucose uptake in many cell lines, ranging from normal and transformed human fibroblasts, mouse fibroblasts transfected with human u-PAR, and cells of epidermal origin. Such increase of glucose uptake reached a peak within 5-10 min, depending on the cell line, and occurred through the facilitative glucose transporters (GLUTs), since it was inhibited by cytochalasin B. Each cell line showed a specific mosaic of glucose transporter isoforms, GLUT2 being the most widespread and GLUT1 the most abundant, when present. u-PAR stimulation was followed by translocation of GLUT1 from the microsomal to the membrane compartment, as shown by both immunoblotting and immunofluorescence of sonicated plasma membrane sheets and by activation of GLUT2 on the cell surface. Both translocation and activation resulted inhibitable by protein-tyrosine kinase inhibitors and independent of downregulation of protein kinase C (PKC). The increase of intracellular glucose was followed by neosynthesis of diacylglycerol (DAG) from glucose, as previously shown. Such neosynthesis was completely inhibited by impairment of facilitative GLUT transport by cytochalasin B. DAG neosynthesis was followed by activation of PKC, whose activity translocated into the intracellular compartment (PKM), where it probably phosphorylates substrates required for u-PAR-dependent chemotaxis. Our data show that u-PAR-mediated signal transduction, related with u-PA-induced chemotaxis, involves activation of tyrosine kinase-dependent glucose transporters, leading to increased de novo DAG synthesis from glucose, eventually resulting in activation of PKC.  相似文献   

18.
We have studied the fatty acid composition of erythrocyte membrane phospholipids in nine Type 1 (insulin-dependent) diabetic patients and nine healthy control subjects. Cell membranes from the diabetic patients showed a marked decrease in the total amount of polyunsaturated fatty acids (19.0% +/- 2.2 vs 24.6% +/- 1.4, p < 0.0001) mainly at the expense of docosahexaenoic acid C22:6(n3) (2.9% +/- 1.1 vs 5.3% +/- 1.3, p < 0.001), and arachidonic acid C20:4n6 (12.0% +/- 1.6 vs 15.1% +/- 0.6, p < 0.0005). Conversely, the total amount of saturated fatty acids was significantly increased (p < 0.05) and the polyunsaturated/saturated ratio was decreased in the Type 1 diabetic patients (p < 0.00 005). Neither the time from diagnosis, nor C-peptide levels, correlated with parameters indicating a poor metabolic control of Type 1 diabetes. However, C22:6(n-3) and total n-3 content significantly correlated with HbA1c (r = -0.79 and r = -0.88, respectively, p < 0.01), fructosamine (r = -0.71 and r = -0.74, respectively, p < 0.05), and Na+-K+ ATPase activity (maximal rate/Km quotient) (r = 0.78 and r = 0.71, respectively, p < 0.05). In conclusion we have found marked alterations of cell membrane lipid composition in Type 1 diabetic patients. These cell membrane abnormalities in lipid content were related to sodium transport systems and to poor metabolic control. Either diet, or the diabetic state, might be responsible for the observed cell membrane abnormalities. A dietary intervention study might differentiate the role of diet and diabetes in the reported cell membrane alterations.  相似文献   

19.
Brief ischemic episodes confer marked protection against myocardial stunning 1-3 d later (late preconditioning [PC] against stunning). The mechanism of this powerful protective effect is poorly understood. Although protein kinase C (PKC) has been implicated in PC against infarction, it is unknown whether it triggers late PC against stunning. In addition, the entire PKC hypothesis of ischemic PC remains controversial, possibly because the effects of PKC inhibitors on PC protection have not been correlated with their effects on PKC activity and/or translocation in vivo. Thus, conscious rabbits underwent a sequence of six 4-min coronary occlusion (O)/4-min reperfusion (R) cycles for three consecutive days (days 1, 2, and 3). In the control group (group I, n = 7), the recovery of systolic wall thickening after the six O/R cycles was markedly improved on days 2 and 3 compared with day 1, indicating the development of late PC against stunning. Administration of the PKC inhibitor chelerythrine at a dose of 5 mg/kg before the first O on day 1 (group II, n = 10) abrogated the late PC effect against stunning, whereas a 10-fold lower dose (0.5 mg/kg; group III, n = 7) did not. Administration of 5 mg/kg of chelerythrine 10 min after the sixth reperfusion on day 1 (group IV, n = 6) failed to block late PC against stunning. When rabbits were given 5 mg/kg of chelerythrine in the absence of O/R (group V, n = 5), the severity of myocardial stunning 24 h later was not modified. Pretreatment with phorbol 12-myristate 13-acetate (4 microg/kg) on day 1 without ischemia (group VI, n = 11) induced late PC against stunning on day 2 and the magnitude of this effect was equivalent to that observed after ischemic PC. In vehicle-treated rabbits (group VIII, n = 5), the six O/R cycles caused translocation of PKC isoforms epsilon and eta from the cytosolic to the particulate fraction without significant changes in total PKC activity, in the subcellular distribution of total PKC activity, or in the subcellular distribution of the alpha, beta1, beta2, gamma, delta, zeta, iota, lambda, and mu isoforms. The higher dose of chelerythrine (5 mg/kg; group X, n = 5) prevented the translocation of both PKC epsilon and eta induced by ischemic PC, whereas the lower dose (0.5 mg/kg; group XI, n = 5) prevented the translocation of PKC eta but not that of epsilon, indicating that the activation of epsilon is necessary for late PC to occur whereas that of eta is not. To our knowledge, this is the first demonstration that a PKC inhibitor actually prevents the translocation of PKC induced by ischemic PC in vivo, and that this inhibition of PKC translocation results in loss of PC protection. Taken together, the results demonstrate that the mechanism of late PC against myocardial stunning in conscious rabbits involves a PKC-mediated signaling pathway, and implicate epsilon as the specific PKC isoform responsible for the development of this cardioprotective phenomenon.  相似文献   

20.
PURPOSE: Elevation of diacylglycerol (DAG) and protein kinase C (PKC) levels in diabetic vascular tissue is associated with abnormalities of retinal and renal hemodynamics. The object of this study was to determine whether direct elevation of retinal DAG levels, in the absence of diabetes or hyperglycemia, can mimic the hemodynamic abnormalities normally observed in diabetic rats. Retinal DAG levels were elevated using an inhibitor of DAG kinase that converts DAG to phosphatidic acid. The effectiveness of a specific PKC-beta isoform inhibitor introduced directly into the retinas of diabetic rats in reversing diabetes-related abnormal retinal hemodynamics was also investigated. METHODS: For retinal blood flow studies, diacylglycerol kinase (DGK) inhibitor R59949, at various concentrations, was injected into the vitreous of nondiabetic Sprague-Dawley rats (n = 33), and a PKC-beta isoform-selective inhibitor LY333531 was injected into the vitreous of rats with streptozotocin (STZ)-induced diabetes of 2 weeks' duration (n = 21). Retinal hemodynamic changes were quantitated using video-based fluorescein angiography. Total DAG levels were assayed from five nondiabetic rat retinas after DGK inhibition and retinal PKC activities were assayed from six diabetic rat retinas after PKC-beta inhibition. RESULTS: DGK inhibitor R59949 injected into the vitreous dose dependently increased the mean circulation time (MCT) and decreased retinal blood flow (EC50 = 10(-8) M). After 30 minutes, 10(-5) M R59949 induced a 1.7-fold increase in total retinal DAG levels, compared with the levels in vehicle-injected eyes, an increase in MCT from 0.87 +/- 0.05 seconds to 1.44 +/- 0.12 seconds (P < 0.01) and a decrease in retinal blood flow from 105.3 +/- 6.5 pixel2/second to 64.1 +/- 5 pixel2/second (P < 0.01). The effect of R59949 was sustained for 60 minutes after injection. These retinal hemodynamic parameters after DGK inhibition were comparable to those measured at baseline in rats with STZ-induced diabetes of 2 weeks' duration (MCT = 1.38 +/- 0.20 seconds; retinal blood flow = 68 +/- 11.2 pixel2/second). Intravitreal injection of the PKC-beta inhibitor (LY333531) at 10(-5) M in diabetic rats decreased by a factor of 1.6 the diabetes-related increased PKC activation, decreased the prolonged MCT (0.98 +/- 0.13 seconds; P < 0.01) and increased retinal blood flow (93.4 +/- 14.2 pixel2/second; P < 0.01). The measured retinal circulatory parameters after PKC inhibition in the retina were comparable to those measured at baseline in the nondiabetic rats. CONCLUSIONS: These results provide direct evidence that DAG elevation and subsequent PKC-beta isoform activation are the primary biochemical sequelae responsible for the development of the abnormal retinal hemodynamics observed in diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号