首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastodynamic response of an infinite non-homogeneous orthotropic material with an interfacial finite crack under distributed normal and shear impact loads is examined. Solution for the stress intensity factor history around the crack tips is found. Laplace and Fourier transforms are employed to solve the equations of motion leading to a Fredholm integral equation on the Laplace transform domain. The dynamic stress intensity factor history can be computed by numerical Laplace transform inversion of the solution of the Fredholm equation. Numerical values of the dynamic stress intensity factor history for some materials are obtained. Interfacial cracks between two different materials and between two pieces of the same material but different fiber orientation are considered. Bimaterial formulation of a crack problem is shown to converge to the mono-material formulation, derived independently, in the limiting case when both materials are the same.  相似文献   

2.
The dynamic response of a central crack in a strip composite under normal impact is analyzed. The crack is oriented normally to the interfaces. Laplace and Fourier transform techniques are used to reduce the elastodynamic problem to a pair of dual integral equations. The integral equations are solved by using an integral transform technique and the result is expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factor is determined and its dependence on time, the material properties and the geometrical parameters is discussed.  相似文献   

3.
Impact response of a finite crack in an orthotropic strip   总被引:1,自引:0,他引:1  
Summary The elastodynamic response of a finite crack in an infinite orthotropic strip under normal impact is investigated in this study. The crack is situated symmetrically and oriented in a direction normal to the edges of the strip. Laplace and Hankel transforms are used to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform plane. The solution to the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. Numerical values on the dynamic stress intensity factor for some fiber-reinforced composite materials are obtained and the results are graphed to display the influence of the material orthotropy.  相似文献   

4.
The problem of a through permeable crack situated in the mid-plane of a piezoelectric strip is considered under anti-plane impact loads for two cases. The first is that the strip boundaries are free of stresses and of electric displacements, and the second is that the strip boundaries are clamped rigid electrodes. The method adopted is to reduce the mixed initial-boundary value problem, by using integral transform techniques, to dual integral equations, which are further transformed into a Fredholm integral equation of the second kind by introducing an auxiliary function. The dynamic stress intensity factor and energy release rate in the Laplace transform domain are obtained in explicit form in terms of the auxiliary function. Some numerical results for the dynamic stress intensity factor are presented graphically in the physical space by using numerical techniques for solving the resulting Fredholm integral equation and inverting Laplace transform.  相似文献   

5.
This paper considers the transient stress intensity factor (Mode I) of a penny-shaped crack in an infinite poroelastic solid. The crack surfaces are impermeable. By virtue of the integral transform methods, the poroelastodynamic mixed boundary value problems is formulated as a set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind in the Laplace transform domain. Time domain solutions are obtained by inverting Laplace domain solutions using a numerical scheme. A parametric study is presented to illustrate the influence of poroelastic material parameters on the transient stress intensity. The results obtained reveal that the dynamic stress intensity factor of poroelastic medium is smaller than that of elastic medium and the poroelastic medium with a small value of the potential of diffusivity shows higher value of the dynamic stress intensity factor.  相似文献   

6.
Impact response of a finite crack in an orthotropic piezoelectric ceramic   总被引:1,自引:0,他引:1  
Y. Shindo  F. Narita  E. Ozawa 《Acta Mechanica》1999,137(1-2):99-107
Summary The transient dynamic stress intensity factor and dynamic energy release rate were determined for a cracked piezoelectric ceramic under normal impact in this study. A plane step pulse strikes the crack and stress wave diffraction takes place. Laplace and Fourier transforms are employed to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform plane. The solution of the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion technique is used to compute the values of the dynamic stress intensity factor and the dynamic energy release rate for some piezoelectric ceramics, and the results are graphed to display the electroelastic interactions.  相似文献   

7.
In this article the determination of dynamic mode II stress intensity factors of a crack embedded in an infinite medium subjected to transient concentrated line forces is investigated. The concentrated line forces act at an arbitrary distance away from the crack, including the special case when the forces act precisely on the crack surfaces. Laplace and Fourier transforms are used to reduce the mixed boundary value problem to a standard Fredholm integral equation of the second kind in Laplace transform domain, which is solved numerically. Via the numerical inversion of Laplace transform, the dynamic mode II stress intensity factors at the crack tips are obtained and presented in graphical form for various geometry parameters. It is found that the point of application of the concentrated forces, which induce the maximum value of the dynamic mode II stress intensity factors, is precisely on the crack surface for horizontal concentrated forces, whereas for vertical forces, it is at some distance away from the crack.  相似文献   

8.
The torsional impact response of a penny-shaped interface crack in a layered composite is considered in this study. The geometry of the composite consists of two bonded dissimilar elastic layers which are sandwiched between two half-spaces made of a different material. Laplace and Hankel transforms are used to reduce the problem to the solution of a pair of dual integral equations. These equations are solved by using an integral transform technique and the result is expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factor is determined and its dependence on time, the material properties and the geometry parameters is discussed.  相似文献   

9.
The torsional impact response of a penny-shaped crack in a transversely isotropic strip is considered. The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transforms are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Investigated are the effects of material nonhomogeneity and orthotropy and strip’s highness on the dynamic stress intensity factor. The peak of the dynamic stress intensity factor can be suppressed by increasing the shear moduli’s gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface. The dynamic behavior varies little with the increasing of the strip’s highness.  相似文献   

10.
The torsional impact response of a penny-shaped crack lying on a bimaterial interface is considered in this study. Laplace and Hankel transforms are used to reduce the problem to the solution of a pair of dual integral equations. The solution to the dual integral equations is expressed in terms of a Fredholm integral equation of the second kind with a finite integral kernel. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factor is determined and its dependence on time and material constants is discussed.  相似文献   

11.
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.  相似文献   

12.
Scattering of transient horizontal shear waves by a finite crack located at the interface of two bonded dissimilar elastic solids is investigated in this study. Laplace and Fourier transform technique is used to reduce the problem to a pair of dual integral equations. The solution of the dual integral equation is expressed in terms of the Fredholm integral equation of the second kind having the kernel of a finite integration. Dynamic stress intensity factor is obtained as a function of the material and geometric properties and time.  相似文献   

13.
The elastodynamic response of an infinite orthotropic material with a semi-infinite crack propagating at constant speed under the action of concentrated loads on the crack faces is examined. Solution for the stress intensity factor history around the crack tip is found for the loading modes I and II. Laplace and Fourier transforms along with the Wiener-Hopf technique are employed to solve the equations of motion. The asymptotic expression for the stress near the crack tip is analyzed which lead to a closed-form solution of the dynamic stress intensity factor. It is found that the stress intensity factor for the propagating crack is proportional to the stress intensity factor for a stationary crack by a factor similar to the universal function k(v) from the isotropic case. Results are presented for orthotropic materials as well as for the isotropic case.  相似文献   

14.
The boundary integro-differential equation method is illustrated by two numerical examples concerning the study of the dynamic stress intensity factor around a penny-shaped crack in an infinite elastic body. Harmonic and impact load on the crack surface has been considered. Applying the Laplace transform with respect to time to the governing equations of motion the problem is solved in the transformed domain by the boundary integro-differential equations. The Laplace transformed general transient problem can be used to solve the steady-state problem as a special case where no numerical inversion is involved.  相似文献   

15.
Summary The problem of diffraction of anti-plane shear waves by a running crack of finite length is investigated analytically. Fourier transform method is used to solve the mixed boundary value problem which reduces to two pairs of dual integral equations. These dual integral equations are further reduced to a pair of Fredholm integral equations of the second kind. The iterative solution of the integral equations has been obtained for small wave number. The solution is used to calculate the dynamic stress intensity factor at the edge of the crack.With 2 Figures  相似文献   

16.
In this paper the torsional impact response of an external circular crack in an infinite medium bonded to a cylindrical inclusion has been investigated. The infinite medium and cylindrical inclusion are assumed to be of different homogeneous isotropie elastic materials. Laplace and Hankel transforms are used to reduce the problem to the solution of a pair of dual integral equations. These equations are solved by using an integral transform technique and the results are expressed in terms of a Fredhol integral equation of the second kind. By solving Fredholm integral equation of the second kind the numerical results for the dynamic stress-intensity factor are obtained which measure the load transmission on the crack.  相似文献   

17.
Abstract

In this paper, the transient analysis of semi‐infinite propagating cracks in piezoelectric materials subjected to dynamic anti‐plane concentrated body force is investigated. The crack surface is assumed to be covered with an infinitesimally thin, perfectly conducting electrode that is grounded. In analyzing this problem, it has characteristic lengths and a direct attempt towards solving this problem by transform and Wiener‐Hopf techniques (Noble, 1958) is not applicable. In order to solve this problem, a new fundamental solution for propagating cracks in piezoelectric materials is first established and the transient response of the propagating crack is obtained by superposition of the fundamental solution in the Laplace transform domain. The fundamental solution to be used is the responses of applying exponentially distributed traction in the Laplace transform domain on the propagating crack surface. Taking into account the quasi‐static approximation, exact analytical transient solutions for the dynamic stress intensity factor and the dynamic electric displacement intensity factor are obtained by using the Cagniard‐de Hoop method (Cagnard, 1939; de Hoop, 1960) of Laplace inversion and are expressed in explicit forms. Numerical calculations of dynamic intensity factors are evaluated and the results are discussed in detail. The transient solutions for stationary cracks have been shown to approach the corresponding static values after the shear wave of the piezoelectric material has passed the crack tip.  相似文献   

18.
In this paper the authors make use of a Mellin transform technique to find formulae expressing the stress intensity factor and crack energy of a radial crack in a finite elastic disc directly in terms of the solution of a Fredholm integral equation. The constant loading case is considered in detail and numerical results are given.  相似文献   

19.
The problem of a homogeneous linear elastic body containing multiple non-collinear cracks under anti-plane dynamic loading is considered in this work. The cracks are simulated by distributions of dislocations and an integral equation relating tractions on the crack planes and the dislocation densities is derived. The integral equation in the Laplace transform domain is solved by the Gaussian–Chebyshev integration quadrature. The dynamic stress intensity factor associated with each crack tip is calculated by a numerical inverse Laplace scheme. Numerical results are given for one crack and two or three parallel cracks under normal incidence of a plane horizontally shear stress wave.  相似文献   

20.
H. J. Choi 《Acta Mechanica》2007,193(1-2):67-84
Summary The impact response of an inclined edge crack in a layered medium with a functionally graded interfacial zone is investigated under the state of antiplane deformation. The interfacial zone is modeled by a nonhomogeneous interlayer having the power-law variations of shear modulus and mass density between the coating and the substrate of dissimilar homogeneous properties. Based on the Laplace and Fourier integral transform technique and the coordinate transformations of basic field variables, the transient crack problem is reduced to the solution of a singular integral equation with a generalized Cauchy kernel in the Laplace transform domain. The crack-tip response in the physical domain is recovered through the inverse Laplace transform to evaluate the dynamic mode III stress intensity factors as functions of time. The peak values of the dynamic stress intensity factors are further obtained versus the crack orientation angle, addressing the effects of crack obliquity on the overshoot characteristics of the transient crack-tip behavior for various combinations of material and geometric parameters of the layered medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号