共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
基于ARMA模型的风电场风速短期预测 总被引:3,自引:1,他引:3
通过分析达坂城风电场风速数据并建立ARMA模型,基于时间序列分析法实现了提前1h风速预测,分析预测结果证明预测时间和风速震荡性是影响风速预测精度的主要因素,为更长时间的风速预测提供理论基础。 相似文献
3.
针对风速时间序列复杂的非线性特征,根据C-C算法确定重构参数(嵌入维数及延迟时间)并对风速重构相空间,建立径向基函数神经网络(RBF网络)及Volterra自适应预测模型对风速时间序列进行预测,以Lorenz方程数值解为例验证了两种预测方法的可行性。结果表明:RBF神经网络模型和Volterra自适应预测模型都能对实测风速时间序列进行较为准确的预测,预测误差分别在0.3和0.1 m/s内;Volterra自适应预测模型预测结果总体较RBF神经网络模型预测精度更高,且随着预测时间的增大,预测误差呈增大趋势,这与混沌存在初值敏感性的特征相符。 相似文献
4.
5.
目前对风电功率短时预测的研究主要集中在预测方法上,而缺乏对数据本身特性的探讨。从实测数据出发,呈现3种典型分辨率5 min、10 min、15 min,并结合Elman神经网络算法对超短期(4 h)和短期(24 h)的风力发电机输出功率进行预测分析。结果表明:分辨率为10 min的原始数据对风电输出功率的超短期预测具有更好的结果,15 min分辨率的数据对风电功率的短期预测结果更佳。采用合理分辨率的数据后,能够有效地提高风电功率的预测精度。 相似文献
6.
基于时间序列模型的风电场风速预测研究 总被引:1,自引:0,他引:1
基于时间序列的方法,对风速的长期预测进行了研究,并在工程应用的基础上提出了新的预测思路:首先将风速信号分解成趋势信号和去趋势项随机信号,然后分别用滑动滤波和小波分析这2种方法对分解出的去趋势项随机信号进行数据处理并比较,再用时间序列的方法对趋势项信号和处理后的信号分别进行预测并叠加,得到最后的预测风速信号.结果表明:五项滑动滤波处理数据的方法与Daubechies小波分解法均能实现精度较高的风速长期预测;与小波分解法相比,滑动滤波方法算法的复杂性低,在工程应用上可行性更高. 相似文献
7.
基于持续法、人工神经网络法(ANN)和支持向量机(SVM)3种不同预测模型对内蒙古某风电场短期风速进行了预测研究,比较了不同单一预测模型的预测精度,并进行了4种不同预测模型的组合预测。计算结果表明,单一预测模型中支持向量机方法精度最高,而组合预测中3种方法组合的预测精度最高,并且组合预测精度均高于单一预测方法的精度。同时发现,当单一模型预测误差之间存在较强的负相关关系时,组合预测精度提高明显;而当单一模型预测误差之间存在较强的正相关关系时,则组合预测精度改进有限。 相似文献
8.
基于经验模式分解和时间序列分析的风电场风速预测 总被引:2,自引:0,他引:2
针对风速时间序列的非线性和非平稳性,该文提出将经验模式分解(Empirical Mode Decomposition,EMD)和时间序列分析方法相结合对风电场风速进行预测,以探寻更为准确有效地风速预测方法.首先,运用EMD对原始风速序列进行预处理,将其自适应地分解成一系列不同尺度的模式分量,这样能够突出原始风速时间序列不同的局部特征信息;然后,分析各分量,根据其变化规律,采用时间序列分析法分别建立相应的模型并进行预测,这样既简化了建立的模型又降低了预测的成本;最后将各分量的预测值叠加得到风速序列的预测值.算例结果表明,该方法大幅提高了风速预测精度. 相似文献
9.
一种新的风电场风速时间序列建模及
超短期预测方法 总被引:1,自引:0,他引:1
提出了一种新的风速时间序列建模方法。首先,将归一化后的历史风速时间序列分解为矢量集,按相似性度量原则提取相似性最高的多个矢量作为模型训练样本对的输入,再取相应矢量的下一时刻风速值作为训练样本对的输出,然后采用自适应模糊推理系统来对风速序列建模,再通过多步循环预测实现了风速的超短期预测。以上海地区某风场的实际风速数据为例,验证结果显示预测模型具备良好的精度。 相似文献
10.
由于风速的随机性、间歇性,以及风电场内各机组风速、功率的分散性,给风功率预测带来了较大难度。在计算风速线性相关的权值基础上,提出了改进模糊C均值聚类算法(fuzzy c-means,FCM)的风速模型,建立了风电场等值风速与改进FCM风速的关系函数。以某风电场实测数据进行验证,结果表明:所提风电功率预测方法算法简单;该方法预测精度提高了71.35%。在该风电场不同日周期下,验证了所提预测方法的有效性和普适性。 相似文献
11.
基于小波变换与Elman神经网络的短期风速组合预测 总被引:1,自引:0,他引:1
风速的准确预测对风电场发电系统的经济和安全运行有着重要的作用。为了克服风速随机性强的缺点,提高短期风速预测的精度,提出了一种将小波变换与Elman神经网络相结合的短期风速组合预测模型。该模型由小波预处理模块和神经网络预测模块组成。首先利用小波预处理模块将风速序列作多尺度分解,重构得到不同频段的子序列,然后利用Elman神经网络模块分别对其训练和预测。实际风速预测结果表明,与单一的Elman和ARMA法相比,该组合预测模型的预测精度有较大的改善,可以用于风电场短期风速的预测。 相似文献
12.
Da Fang 《国际可持续能源杂志》2017,36(5):415-429
Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation. 相似文献
13.
Gordon Reikard 《风能》2010,13(5):407-418
This study evaluates two types of models for wind speed forecasting. The first is models with multiple causal factors, such as offsite readings of wind speed and meteorological variables. These can be estimated using either regressions or neural networks. The second is state transition and the closely related class of regime‐switching transition models. These are attractive in that they can be used to predict outlying fluctuations or large ramp events. The regime‐switching model uses a persistence forecast during periods of high wind speed, and regressions for low and intermediate speeds. These techniques are tested on three databases. Two main criteria are used to evaluate the outcomes, the number of high and low states than can be predicted correctly and the mean absolute percent error of the forecast. Neural nets are found to predict the state transitions somewhat better than logistic regressions, although the regressions do not do badly. Three methods all achieve about the same degree of forecast accuracy: multivariate regressions, state transition and regime‐switching models. If the states could be predicted perfectly, the regime‐switching model would improve forecast accuracy by an additional 2.5 to 3 percentage points. Analysis of the density functions of wind speed and the forecasting models finds that the regime‐switching method more closely approximates the distribution of the actual data. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
This paper describes a statistical method for short‐term forecasting (1–12 h ahead) of surface layer wind speed using only recent observations, relying on the notion of continuous cascades. Inspired by recent empirical findings that suggest the existence of some cascading process in the mesoscale range, we consider that wind speed can be described by a seasonal component and a fluctuating part represented by a ‘multifractal noise’ associated with a random cascade. Performances of our model are tested on hourly wind speed series gathered at various locations in Corsica (France) and the Netherlands. The obtained results show that a better modeling of the noise term based on cascade process enhances the forecast; furthermore, there is a systematic improvement in the prediction as compared with reference models. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
16.
A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting 下载免费PDF全文
Aditya Choukulkar Yelena Pichugina Christopher T. M. Clack Ronald Calhoun Robert Banta Alan Brewer Michael Hardesty 《风能》2016,19(8):1439-1452
The spurt of growth in the wind energy industry has led to the development of many new technologies to study this energy resource and improve the efficiency of wind turbines. One of the key factors in wind farm characterization is the prediction of power output of the wind farm that is a strong function of the turbulence in the wind speed and direction. A new formulation for calculating the expected power from a wind turbine in the presence of wind shear, turbulence, directional shear and direction fluctuations is presented. It is observed that wind shear, directional shear and direction fluctuations reduce the power producing capability, while turbulent intensity increases it. However, there is a complicated superposition of these effects that alters the characteristics of the power estimate that indicates the need for the new formulation. Data from two field experiments is used to estimate the wind power using the new formulation, and results are compared to previous formulations. Comparison of the estimates of available power from the new formulation is not compared to actual power outputs and will be a subject of future work. © 2015 The Authors. Wind Energy published by John Wiley & Sons, Ltd. 相似文献
17.
风速预测对于风力发电并网调度至关重要。基于BP神经网络建立了风速预测模型,并从BP算法及遗传算法自身特点出发,针对BP网络结构确定困难、收敛速度慢等问题,提出创建多种群遗传算法,实现对BP神经网络的结构和权值初始值的同步优化。通过具体算例表明,经优化后的BP算法的收敛步数和计算时间明显减少,预测精度更高,网络整体性能有了显著提高。 相似文献
18.
Wind energy has assumed a great relevance in the operation and planning of today's power systems due to the exponential increase of installations in the last 10 years. For this reason, many performed studies have looked at suitable representations of wind generation for power system analysis. One of the main elements to consider for this purpose is the model of the wind speed that is usually required as input. Wind speed measurements may represent a solution for this problem, but, for techniques such as sequential Monte Carlo simulation, they have to be long enough in order to describe a wide range of possible wind conditions. If these information are not available, synthetic wind speed time series may be a useful tool as well, but their generator must preserve statistical and stochastic features of the phenomenon. This paper deals with this issue: a generator for synthetic wind speed time series is described and some statistical issues (seasonal characteristics, autocorrelation functions, average values and distribution functions) are used for verification. The output of the model has been designed as input for sequential Monte Carlo simulation; however, it is expected that it can be used for other similar studies on wind generation. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
19.
A. Sfetsos 《Renewable Energy》2002,27(2)
This paper presents a novel method for the forecasting of mean hourly wind speed data using time series analysis. The initial point for this approach is mainly the fact that none of the forecasting approaches for hourly data, that can be found in the literature, based on time series analysis or meteorological models, gives significantly lower prediction error than the elementary persistent approach. This was combined with the characteristics of the wind speed data, which are determined by the power spectrum values, distinguished by the spectral gap in intervals between 20 minutes and 2 hours. The finally proposed methodology is based on the multi-step forecasting of 10 minutes averaged data and the subsequent averaging to generate mean hourly predictions. When applied to two independent data sets, this approach outperformed by a factor of four, the conventional one which utilizes past mean hourly wind speed values as inputs to the forecasting models. 相似文献