首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
杨佳  杨利利  武建 《太阳能》2013,(17):43-45
扩散后的方块电阻以70±21/2/为准,经实验发现去PSG后的硅片少子寿命要比扩散后的硅片少子寿命高,对比通源前通氧(A扩散工艺)和不通氧(B扩散工艺)两种扩散工艺扩散的硅片在去PSG后少寿命的涨幅及对最终制成电池片的转换效率的影响,结果表明,A扩散工艺的硅片比B扩散工艺的硅片在去PSG后的少子寿命增量更大,平均增量可达2.50μs,并且最终制成的电池片效率高出0.08%,短路电流增加0.012A,也更具稳定性。:  相似文献   

2.
结合PC1D模拟软件,对减薄至200μm的多晶硅电池片进行双面扩散与背靠背扩散的对比研究。试验表明:双面扩散工艺和背靠背扩散工艺均具有良好的吸杂效果,少子寿命有很大提高,少子扩散长度已大于电池片厚度。双面扩散比背靠背扩散具有更好的吸杂和钝化效果,少子寿命更长。但PC1D软件仿真及试验结果显示,扩散后电池片的转换效率、短路电流、开路电压等电学性能没有显著改善。  相似文献   

3.
变温磷吸杂对多晶硅性能的影响   总被引:1,自引:0,他引:1  
用微波光电导衰减仪(μ-PCD)研究了不同温度和时间的恒温和变温磷吸杂处理对铸造多晶硅片电学性能的影响。实验发现:变温吸杂明显优于恒温吸杂,特别是对原生高质量多晶硅;其优化的变温磷吸杂工艺为1000℃/0.5h 700℃/1.5h;而在高温恒温吸杂中,多晶硅少子寿命值反而显著下降。实验现象表明:磷吸杂效果主要是与过渡族金属的溶解、扩散和分凝有关。  相似文献   

4.
快速热处理工艺下金属杂质对铸造多晶硅少子寿命的影响   总被引:1,自引:0,他引:1  
利用离子注入技术在铸造多晶硅中分别引入铜、铁、镍杂质玷污,用微波光电导衰减(μ-PCD)仪测试技术研究了铜、铁、镍杂质对硅片少子寿命的影响.研究发现:原生铸造多晶硅片和离子注入铜、铁、镍杂质的多晶硅片经1000℃常规热处理2h后少子寿命值都会降低,下降幅度基本一致.原生硅片在低中温条件下,少子寿命值呈现先下降后上升的趋势;当硅片经高温RIP后,其少子寿命值得到明显改善.低中温RTP条件下,经铜、镍杂质玷污的硅片随着退火温度的升高,少子寿命变化不大.高温RTP条件下,经铜、铁、镍杂质玷污后硅片的少子寿命迅速下降.实验结果表明高温RTP能够提高杂质含量较低硅片的少子寿命,而对杂质含量较高硅片的少子寿命有负面影响.  相似文献   

5.
使用干氧热氧化的方法在晶体硅太阳电池表面生长SiO2钝化膜。结果表明:在780℃下生长的氧化薄膜钝化效果较好,实验检测少子寿命提高了8.3μs,以此为基础制备的太阳电池转换效率达到17.38%。实验还对氮气气氛下的氧化进行研究,发现当氮气流量为10L/min时,能强化薄膜的钝化效果,少子寿命可提高9.4μs。  相似文献   

6.
采用PC1D模拟软件模拟不同少子寿命的硅片条件下电阻率、扩散方块电阻、结深对n-PERC电池性能的影响。结果表明,随着硅片少子寿命的延长,电池效率提高。通过对实际生产中少子寿命和硅片径向不均匀度的研究,得出n-PERC电池使用硅片的最佳少子寿命值。  相似文献   

7.
UMG多晶硅片的少子寿命   总被引:1,自引:0,他引:1  
利用微波光电导衰减方法,研究磷吸杂、热氧化以及氮化硅钝化后快速热退火等工艺对物理冶金法制备的UMG硅片少子寿命的影响。实验发现:磷吸杂可有效改善冶金法硅片的少子寿命,其优化的条件是950℃处理4h;经热氧化处理后,少子寿命有所下降;氮化硅钝化后快速热退火处理可提高少子寿命,其优化的条件为800℃退火30s。  相似文献   

8.
为研究间隙氧和硼对于硅片少子寿命和光衰减的影响,实验中采用不同氧碳含量、不同掺杂浓度的p型(100)的直拉硅(Cz-Si)片制作太阳电池,设计了不同温度、气氛的热处理工艺。发现:太阳能级直拉单晶硅片中间隙氧含量和硼的掺杂浓度的不同对于硅片少子寿命的影响有一定的规律;硅片少子寿命值在650℃热处理时有轻微下降,而在后续650℃和950℃的热处理中有着显著的提高。当电阻率一定时,低氧的样片有利于少子寿命的提高;而在氧含量相同的情况下,掺杂硼的浓度越低,对于少子寿命的提高越有利。  相似文献   

9.
在制备晶体硅太阳电池pn结的扩散工序中,工艺设计对硅片中磷浓度的分布起重要作用进而会影响电池电性能,通过实验研究,优化得出多步扩散工艺。结果显示,采用多步扩散方法可减少死层、增加电活性磷掺杂量,并能通过适当调整第二次恒定源扩散工艺参数实现对填充因子的独立控制。与常规的两步扩散工艺相比,新工艺制备的太阳电池开路电压Voc升高6 m V,填充因子FF得到明显改善,光电转换效率Eff有0.4%的绝对提升,使组件输出效率CTM相应提高0.97%。  相似文献   

10.
多晶硅太阳电池少子寿命的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
张妹玉  陈朝 《太阳能学报》2011,32(9):1403-1407
主要引入载流子的有效迁移率和有效扩散长度两个物理量,对多晶硅的少子寿命进行数值模拟.在此基础上建立了多晶硅太阳电池的一维物理模型,采用数值模拟方法对其在AM1.5太阳光入射下的电池输出特性Lsc、Voc、FF和η进行模拟计算,着重分析了晶粒尺寸和基区少子寿命对多晶硅太阳电池性能的影响.模拟结果表明,晶粒尺寸和少子寿命是影响多晶硅太阳电池性能的两个关键因素.当少子寿命较低时,晶粒尺寸对电池效率的影响不大,此时电池效率的提高受限于少子寿命;当少子寿命增大时,电池效率随晶粒尺寸的增大显著提高.同时,从模拟结果可得到电池效率与少子寿命和晶粒尺寸之间的定量关系.  相似文献   

11.
The open circuit voltage decay (OCVD) technique has been used to determine the minority carrier lifetime. In this study, an experimental and analytical method is described for determination of minority carrier lifetime at porous Si based solar cell by photo induced OCVD technique. The cell is illuminated by a monochromatic light source (λ = 658 nm) in the open circuit configuration, and the decay of voltage is measured after abruptly terminating the excitation. For the analysis of the OCVD characteristic of solar cell device, equivalent electrical circuit has been proposed in which the diffusion capacitance is connected in series with the contribution of the solar cell interface. Exact minority carrier lifetimes at low (50-170 K) and high (190-330 K) temperature regions have been obtained as 28.9 and 2.65 μs from the temperature dependent OCVD measurements by using an alternative extraction technique.  相似文献   

12.
Although phosphorus (P) diffusion gettering process has been wildly used to improve the performance of Si solar cells in photovoltaic technology, it is a new attempt to apply P diffusion gettering process to upgraded metallurgical grade silicon (UMG-Si) wafers with the purity of 99.999%. In this paper, improvements on the electrical properties of UMG-Si wafers and solar cells were investigated with the application of P diffusion gettering process. To enhance the improvements, the gettering parameters were optimized on the aspects of gettering temperature, gettering duration and POCl3 flow rate, respectively. As we expected, the electrical properties of both multicrystalline Si (multi-Si) and monocrystalline Si (mono-Si) wafers were significantly improved. The average minority carrier lifetime increased from 0.35 μs to nearly about 2.7 μs for multi-Si wafers and from 4.21 μs to 5.75 μs for mono-Si wafers, respectively. Accordingly, the average conversion efficiency of the UMG-Si solar cells increased from 5.69% to 7.03% for multi-Si solar cells (without surface texturization) and from 13.55% to 14.55% for mono-Si solar cells, respectively. The impurity concentrations of as-grown and P-gettered UMG-Si wafers were determined quantitively so that the mechanism of P diffusion gettering process on UMG-Si wafers and solar cells could be further understood. The results show that application of P diffusion gettering process has a great potential to improve the electrical properties of UMG-Si wafers and thus the conversion efficiencies of UMG-Si solar cells.  相似文献   

13.
The gettering during an emitter diffusion in multicrystalline silicon is improved by adding a low-temperature tail to the standard diffusion. The tail keeps the emitter sheet resistance within the usable range for solar cells. An increase in minority carrier lifetime by a factor ten is obtained. Decrease in recombination activity of grain boundaries and decrease in interstitial iron concentration are mainly responsible for this improved lifetime. The proposed mechanisms for this improvement are: reduction of size of precipitates because of the longer duration, possibly assisted by beneficial changes in thermodynamics and kinetics of the gettering because of the low temperature.  相似文献   

14.
Multicrystalline Si for photovoltaic applications is a very inhomogeneous material with localized regions of high dislocation density and large impurity and precipitate concentrations which limit solar cell efficiency by acting as carrier recombination sites. Due to slow dissolution of precipitates in multicrystalline Si, these regions cannot be improved by conventional P and Al gettering treatments for removal of metal impurities which give good results for single crystal Si. It is shown that an extended high temperature Al gettering treatment can improve minority carrier diffusion lengths in these low quality regions and homogenize the electrical properties of multicrystalline Si wafers.  相似文献   

15.
Lifetime of minority carriers has been widely identified to be the key material parameter determining the conversion efficiency of pn-junction silicon solar cells. Impurities and defects in the silicon crystal lattice reduce the charge carrier lifetime and thus limit the performance of the solar cells. Removal of impurities by silicon material purification is often contradictory with low cost production of photovoltaic devices. In this paper, we present experimental results of an efficient gettering technique which can be applied to low cost processing of multicrystalline silicon solar cells without any additional process steps or compromises with optimal device design parameters. This technique is based on well-known phosphorous gettering. We have discovered that if the silicon wafers are kept in the furnace after the emitter diffusion at the 700°C, significant improvement in the lifetime will take place. At this temperature the properties of the pn-junction remain unaffected meanwhile many lifetime killers are still mobile. The time needed for this temperature program can be easily modified in order to respond to the material quality variations in substrates originating from different parts of multicrystalline ingot. Better control of lifetime can lead to higher degree of starting material utilization.  相似文献   

16.
Hall measurements are a common method to determine the majority charge carrier diffusion constant. But the diffusion constant of the minority carriers Dn, the more interesting parameter in photovoltaics, is rather hard to detect. In this paper we introduce a method to determine Dn locally resolved and mapped in two dimensions. For that purpose the local diffusion length Ldiff, which can be calculated from LBIC (laser beam induced current) measurements, has been combined with the local bulk lifetime τb received by μ-PCD (microwave-detected photo conductance decay) measurements. We evaluated the diffusion constants of the minority charge carriers Dn for different p-type silicon materials with a resolution of 100 μm. The measurements were carried out on solar cells before and after remote plasma hydrogen passivation in order to get an impression of the diffusion constant dependency on hydrogen incorporation.  相似文献   

17.
An emitter wrap-through solar cell structure with diffused channels instead of drilled via-holes has been proposed in this study. The proposed solar cell, with p–n junctions near the surface and in the bulk, is expected to perform better due to (i) zero shadow loss, (ii) enhanced carrier collection from bulk and (iii) low surface coverage of metal. The device structure is simulated in Synopsys® Sentaurus simulator and is compared to the conventional solar cell structure devoid of surface texture. Variation of solar cell performance due to variations in minority carrier lifetime, channel doping, channel diameter and inter-channel spacing has been studied. It is observed that the bulk minority carrier lifetime and separation between channels affect the performance of the cell more than other parameters. Simulation results show that when electron lifetime in p-type is 10 μs and hole lifetime in n-type is 3 μs, the proposed solar cell (with small pitch values) gives 17.5% efficiency while conventional solar cell gives 16.1% efficiency. When minority carrier lifetime in p-type is 100 μs, the proposed solar cell (with small pitch values) gives 19.2% efficiency.  相似文献   

18.
The carrier lifetime of crystalline silicon wafers that were passivated with hydrogenated silicon nitride (SiNx:H) films using plasma enhanced chemical vapor deposition was investigated in order to study the effects of hydrogen plasma pre-treatment on passivation. The decrease in the native oxide, the dangling bonds and the contamination on the silicon wafer led to an increase in the minority carrier lifetime. The silicon wafer was treated using a wet process, and the SiNx:H film was deposited on the back surface. Hydrogen plasma was applied to the front surface of the wafer, and the SiNx:H film was deposited on the hydrogen plasma treated surface using an in-situ process. The SiNx:H film deposition was carried out at a low temperature (<350 °C) in a direct plasma reactor operated at 13.6 MHz. The surface recombination velocity measurement after the hydrogen plasma pre-treatment and the comparison with the ammonia plasma pre-treatment were made using Fourier transform infrared spectroscopy and secondary ion mass spectrometry measurements. The passivation qualities were measured using quasi-steady-state photoconductance. The hydrogen atom concentration increased at the SiNx:H/Si interface, and the minority carrier lifetime increased from 36.6 to 75.2 μs. The carbon concentration decreased at the SiNx:H/Si interfacial region after the hydrogen plasma pre-treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号