首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
Hydrogenated silicon carbide films (SiC:H) were deposited using the electron cyclotron resonance chemical vapour deposition (ECR-CVD) technique from a mixture of methane, silane and hydrogen, and using diborane and phosphine as doping gases. The effects of changes in the microwave power on the deposition rate and optical bandgap were investigated, and variations in the photo- and dark-conductivities were studied in conjunction with film analysis using the Raman scattering technique. In the case of boron-doped samples, the conductivity increased rapidly to a maximum, followed by rapid reduction at high microwave powers. The ratio of the photo- to dark-conductivity (σphd) peaked at microwave power of 600 W. Under conditions of high microwave power, Raman scattering analysis showed evidence of the formation and increase in the silicon microcrystalline and diamond-like phases in the films, the former of which could account for the rapid increase and the latter the subsequent decrease in the conductivity. In the case of phosphorus-doped SiC:H samples, it was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the films which occurred in correspondence to a rapid increase in the conductivity. The conductivity increase stabilised in samples deposited at microwave powers exceeding 500 W probably as a result of dopant saturation. Results from Raman scattering measurements also showed that phosphorus doping has the effect of enhancing the formation of the silicon microcrystals in the film whereas the presence of boron has the effect of preserving the amorphous structure.  相似文献   

2.
Hydrogenated silicon carbide films (SiC:H) were deposited using the electron cyclotron resonance chemical vapour deposition (ECR-CVD) technique from a mixture of methane, silane and hydrogen, and using diborane and phosphine as doping gases. The effects of changes in the microwave power on the deposition rate and optical bandgap were investigated, and variations in the photoand dark-conductivities and activation energy were studied in conjunction with film analysis using the Raman scattering technique. In the case of boron-doped samples, the conductivity increased rapidly to a maximum, followed by rapid reduction at high microwave power. The ratio of the photo- to dark-conductivity (σph/σd) peaked at microwave power of ~600 W. Under conditions of high microwave power, Raman scattering analysis showed evidence of the formation and increase in the silicon microcrystalline and diamond-like phases in the films, the former of which could account for the rapid increase and the latter the subsequent decrease in the conductivity.In the case of phosphorusdoped SiC:H samples, it was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the films which occurred in correspondence to a rapid increase in the conductivity and reduction in the activation energy The conductivity increase stabilised in samples deposited at microwave power exceeding 500 W probably as a result of dopant saturation. Results from Raman scattering measurements also showed that phosphorus doping had the effect of enhancing the formation of the silicon microcrystals in the film whereas the presence of boron had the effect of preserving the amorphous structure.  相似文献   

3.
Hydrogenated amorphous silicon carbide films (a-SiC:H) were deposited using the electron cyclotron resonance chemical vapour deposition technique from a mixture of methane, silane and hydrogen, with diborane as the doping gas. The effect of the microwave power on the deposition rate were studied, and variations in the photo and dark conductivities were investigated in conjunction with film analysis using the Raman scattering technique. The conductivity increases rapidly to a maximum, followed by rapid reduction at high microwave powers. The ratio of the photo to dark conductivity, σph/σd, peaks at microwave powers of ∼600 W. Under conditions of high hydrogen dilution and increasing microwave power, Raman scattering analysis showed evidence of the formation and increase of microcrystalline silicon and diamond-like components in the films, the former of which could account for the rapid increase and the latter the subsequent decrease in the conductivity. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
The phosphorus doped n-type hydrogenated microcrystalline silicon (n-μc-Si:H) thin films are prepared, at the two low substrate temperatures of room temperature and 200 °C, through a low-frequency inductively coupled plasma assisted chemical vapor deposition. The effect of the substrate temperature on the structural properties of the thin films, such as the X-ray Diffraction (XRD) patterns and the Raman spectra, is studied. The XRD measurements show that the diffraction orientations of the thin films present an obvious change when the radio frequency power is increased from 1300 W to 2300 W. The Raman spectra of the thin films deposited at room temperature unambiguously present a phase transition from the amorphous structure to microcrystalline structure whereas no structural phase transition is observed for the thin films deposited at 200 °C. The effect of the substrate temperature on the crystalline volume fraction of the thin films presents a large difference for the radio frequency power in the range of 1300 W-1700 W, while the difference becomes small when the power is increased from 1700 W to 2300 W. The deposition rate and the radio frequency power-sheet resistance curve of the thin films deposited at room temperature are obviously different from those of the thin films prepared at 200 °C. It is attributed to the joint effect of the radio frequency power and substrate temperature on the doping concentration. The electron energy distribution function of the species in the chamber is mainly distributed in a low energy range.  相似文献   

5.
Microcrystalline phase-involved oxygen-rich a-Si:H (hydrogenated amorphous silicon) films have been obtained using catalytic chemical vapor deposition (Cat-CVD) process. Pure SiH4 (silane), H2 (hydrogen), and O2 (oxygen) gases were introduced in the chamber by maintaining a pressure of 0.1 Torr. A tungsten catalyzer was fixed at temperatures of 1750 and 1950 °C for film deposition on glass and crystalline silicon substrates at 200 °C. As revealed from X-ray diffraction spectra, the microcrystalline phase appears for oxygen-rich a-Si:H samples deposited at a catalyzer temperature of 1950 °C. However, this microcrystalline phase tends to disappear for further oxygen incorporation. The oxygen content in the deposited films was corroborated by FTIR analysis revealing SiOSi bonds and typical SiH bonding structures. The optical bandgap of the sample increases from 2.0 to 2.7 eV with oxygen gas flow and oxygen incorporation to the deposited films. In the present thin film deposition conditions, no strong tungsten filament degradation was observed after a number of sample preparations.  相似文献   

6.
Nanostructured silicon carbon films composed of silicon nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix have been deposited by plasma enhanced chemical vapour deposition technique using silane and methane gas mixture highly diluted in hydrogen. The structural and optical properties of the films have been investigated by X-ray diffraction, Raman, Fourier transform infrared, ultra violet-visible-near infrared and photoluminescence spectroscopies while the composition of the films has been obtained from nuclear techniques. The study has demonstrated that the structure of the films evolves from microcrystalline to nanocrystalline phase with the increase in radio frequency (rf) power. Further, it is shown that with increasing the rf power the size of silicon nanocrystallites decreases while the optical gap increases and a blueshift of visible room temperature photoluminescence peak can be observed.  相似文献   

7.
The optical and electrical properties of amorphously deposited and then post-crystallized silicon films are studied as a function of the deposition pressure and the phosphorus doping. Amorphous silicon films are deposited in a high pressure regime by SAPCVD (Sub-Atmospheric Pressure Chemical Vapour Deposition) to study the effect of the deposition pressure. They are also deposited in a low pressure regime by LPCVD (Low Pressure Chemical Vapour Deposition) to study the effect of a low phosphorus doping. Both types of amorphous films are then crystallized in the solid phase at 600 °C.Using different optical and electrical characterization techniques, the beneficial effect of a high pressure as well as of a weak phosphorus doping on the decrease of the defect density is highlighted. These results give some ways to improve the quality of polysilicon enough to be used in photovoltaic or in thin film electronic devices.  相似文献   

8.
We applied ex situ spectroscopic ellipsometry (SE) on silicon thin films across the a-Si:H/μc-Si:H transition deposited using different hydrogen dilutions at a high pressure by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). The optical models were based on effective medium approximation (EMA) and effective to estimate the thickness of the amorphous incubation layer and the volume fractions of amorphous, microcrystalline phase and void in μc-Si:H thin films. We obtained an acceptable data fit and the SE results were consistent with that from Raman spectroscopy and atomic force microscopy (AFM). We found a thick incubation layer in μc-Si:H thin films deposited at a high rate of ~ 5 Å/s and this microstructure strongly affected their conductivity.  相似文献   

9.
Intrinsic microcrystalline silicon films have been prepared with very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) from silane/hydrogen mixture at 180°C. The effect of silane concentration and discharge power on the growth of silicon films was investigated. Samples were investigated by Fourier transform infrared spectroscopy, Raman scattering and X-ray diffraction. The Raman spectrum shows that the morphological transition from microcrystalline to amorphous occurs under conditions of high silane concentration and low discharge power. X-ray diffraction spectra indicate a preferential growth direction of all microcrystalline silicon films in the (111) plane. In addition, a solar cell with an efficiency of 5.1% has been obtained with the intrinsic microcrystalline layer prepared at 10W.  相似文献   

10.
Silicon carbide (SiC) thin films were deposited using hot wire chemical vapor deposition (HWCVD) technique from pure silane and methane gas mixture. The effect of filament distance to the substrate on the structural and optical properties of the films was investigated. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman scattering spectroscopy and UV–Vis–NIR spectroscopy were carried out to characterize SiC films. XRD patterns of the films indicated that the film deposited under highest filament-to-substrate distance were amorphous in structure, while the decrease in distance led to formation and subsequent enhancement of crystallinity. The Si–C bond density in the film structure obtained from FTIR data, showed significant increment with transition from amorphous to nano-crystalline structure. However, it remained almost unchanged with further improvement in crystalline volume fraction. From Raman data it was observed that the presence of amorphous silicon phase and sp 2 bonded carbon clusters increased with the decrease in distance. This reflected in deterioration of structural order and narrowing the optical band gap of SiC films. It was found that filament-to-substrate distance is a key parameter in HWCVD system which influences on the reactions kinetics as well as structural and optical properties of the deposited films.  相似文献   

11.
Li SB  Wu ZM  Jiang YD  Li W  Liao NM  Yu JS 《Nanotechnology》2008,19(8):085706
The influence of structure variation on the 1/f noise of nanometric boron doped hydrogenated polymorphous silicon (pm-Si:H) films was investigated. The films were grown by the conventional radio frequency plasma enhanced chemical vapor deposition (PECVD) method. Raman spectroscopy was used to reveal the crystalline volume fraction (X(c)) and crystal size of the pm-Si:H. The measurement of optical and structure properties was carried out with spectroscopic ellipsometry (SE) in the Tauc-Lorentz model. A Fourier transform infrared (FTIR) spectrometer was used to characterize the presence of nanostructure-sized silicon clusters in pm-Si:H film deposited on KBr substrate. The electrical properties of the films were measured using evaporated coplanar nickel as the electrode. A semiconductor system was designed to obtain the 1/f noise of pm-Si:H film as well as that of amorphous and microcrystalline silicon films. The results demonstrate that the 1/f noise of pm-Si:H is nearly as low as that of microcrystalline silicon and much lower than that of amorphous silicon. The disorder to order transition mechanism of crystallization was used to analyze the decrease of noise compared with amorphous silicon.  相似文献   

12.
本文采用HWA-MWECR-CVD系统制备了微晶硅薄膜。研究了氢稀释比、反应压强以及微波功率对微晶硅薄膜非晶转微晶相变及其相关性能的影响。实验结果表明:当氢稀释比为94%、反应压强为1.5Pa以及微波功率为500W时,高质量的微晶硅薄膜可以被获得,如2.86*104的高光敏性,1nm左右的沉积速率以及8.9%的光致衰退速率等。  相似文献   

13.
Investigations of thin film depositions of silicon carbide (SiC) from pulse sputtering a hollow cathode SiC target are presented. The unique feature of the hollow cathode technique is that germanium can be added to the films. This changes the properties of the SiC. Such changes include evidence of GeC bonds, lowering of the resistivity, and lowering of the bandgap. The analysis includes crystallographic and morphological studies of the deposited films and their quality using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy data. Basic electrical properties are also presented along with optical bandgap information gathered from spectroscopic ellipsometry data.  相似文献   

14.
Raman scattering characteristics of intrinsic and doped hydrogenated nanocrystalline silicon films which prepared by a plasma-enhanced chemical vapor deposition system are investigated. Results indicate that Raman spectra depend intensively on microstructure and impurity in the films. Taking into account phonon confinement effect and tensile strain effect in Si nanocrystals, peak redshift of measured transverse optical modes in Raman spectra of intrinsic films can be well interpreted. With respect to Raman scattering from doped samples, besides phonon confinement effect, the peak of experimental transverse optical mode further downshifts with heightening doping level, which can be primarily assigned to impurity effect from doping. In addition, the increase in relative integral intensity ratio of transverse acoustic branch to transverse optical mode and that of longitudinal acoustic branch to transverse optical mode with decreasing mean dimension of nanocrystals and heightening doping ratio, respectively, can be ascribed to disorder. Furthermore, at the same doping level, incorporation of boron can induce higher disorder than incorporation of phosphorus in nc-Si:H films.  相似文献   

15.
High-quality hydrogenated amorphous silicon films (a-Si:H) were deposited on quartz glass substrates by radio-frequency plasma-enhanced chemical vapor deposition method. The films were then annealed at 800 °C for 3 min by rapid thermal processing (RTP). As confirmed by X-ray diffractometry and Raman spectrometry, hydrogenated microcrystalline silicon films were obtained after the annealing procedure. The mechanism of the rapid solid-phase recrystallization of a-Si:H film by RTP was theoretically mainly attributed to the interaction between short-wavelength photons and ground-state precursor radicals (silicon, SiH2 and SiH3).  相似文献   

16.
Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 °C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.  相似文献   

17.
We performed a Raman scattering study of aluminum induced microcrystallization of thin films of phosphorous-doped hydrogenated amorphous silicon (n+ a-Si:H). These thin films of heavily doped n+ a-Si:H were prepared by plasma enhanced chemical vapor deposition. Afterwards, aluminum was deposited and followed by an annealing process at 523 K in a nitrogen environment during several hours. Raman results reveal the formation of microcrystalline regions distributed in the amorphous matrix, induced by the film annealing in the presence of the aluminum. We have used the spatial correlation model to estimate from the Raman signal the microcrystallite size and its relation with the annealing time. The estimated crystallite size was found to be between 6.8 and 9.5 nm and the broadening and downshift of the signals are explained in terms of the crystallite size and lattice expansion effects due to the annealing process. Conductivity values of the samples as a function of the annealing time are explained in terms of the contributions from the amorphous and from the microcrystalline phases.  相似文献   

18.
The last decade has seen great in electrochromic (EC) technology for smart windows and displays. In this study, WTiOx films formed from TiO2 and WO3 were deposited onto ITO glass with a sheet resistance of 10 Omega cm and on silicon substrates, by pulsed magnetron sputtering using a W and Ti alloy target. The films were deposited at plasma powers 100, 200, 300, 400 and 500 W using a gaseous Ar (150 sccm)/O2 (50 sccm) mixture; the working pressure was fixed at 5E-2 torr. The film thickness increased with the plasma power. However, increasing the plasma power yielded a more crystalline structure with poorer electrochromic properties. The influence of Ti doping and plasma power on the structural, optical and electrochromic properties of the WTiOx thin films was studied. WTiOx films grown at various plasma powers of under 400 W were amorphous. Deposition of films at 400 W yielded the optimal electrochromic properties, with high optical modulation, high coloration efficiency and the lowest color memory effect at wavelengths 400, 550 and 800 nm. An XPS study indicated that Ti can stabilize the valence state of W6+. The improvements caused by the doping with Ti were tested: an optical density (OD) of close to 0.85 and a maximum delta T (%) at 400 nm of 25.8%, at 550 nm of 52.5% and at 800 nm (in the near-IR region) of 62.4%.  相似文献   

19.
Takashi Ehara 《Thin solid films》1997,310(1-2):322-326
The crystalline properties of nitrogen doped hydrogenated microcrystalline silicon thin films deposited by plasma enhanced chemical vapor deposition were studied. Gas phase doping density in the order of 10−2 and 10−1 leads to changes in the crystalline properties of the films. Raman scattering signals indicate that nitrogen doping causes a more significant reduction in crystallite size than does an increase in SiH4 concentration. In addition, the size reduction occurs with a less significant increase in amorphous fraction volume than in the case of SiH4 concentration increase. The N in the Si crystalline induces disorder or stress as a result of the higher electronegativity and smaller atomic size of N compared to Si. Thus, the crystallite size reduction is thought to occur to reduce the disorder in crystalline grain induced by doped nitrogen.  相似文献   

20.
采用热丝和射频等离子体辅助化学气相沉积方法(HF-PECVD),以单晶硅为衬底在低温(< 500℃)条件下沉积氮化硼(BN)薄膜材料.通过傅立叶变换红外光谱(FTIR)、 X射线衍射(XRD)及扫描电镜(SEM)对薄膜样品的组成和结构进行了分析,探讨了温度和等离子体对沉积BN薄膜的影响.此外,用紫外-可见光分光光度计(UV)测试了石英衬底上生长磷掺杂氮化硼(BPXN1-X)薄膜样品的紫外吸收特征,分析了磷掺杂对 BN光学能隙的调节作用以及 BPXN1-X薄膜在紫外空间探测领域的应用前景.结果表明,以单晶硅和光学石英玻璃为衬底在低温条件下用 HF-PECVD方法可以沉积较高质量的 BN薄膜,BN的光学能隙宽度通过磷的掺杂可以得到连续调节,在紫外空间光探测领域具有很大的应用潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号