共查询到20条相似文献,搜索用时 73 毫秒
1.
2.
3.
4.
5.
以愈刨木酚和环氧氯丙烷为原料,采用一步法合成医药中间体愈创木酚缩水甘油醚。经红外光谱确认了产品结构。研究了反应时间、原料配比、催化剂种类与用量、碱用量、反应操作步骤等条件对反应总收率的影响,得出优化反应条件:将愈创木酚:环氧氯丙烷:无水碳酸钾(物质的量比1:8:2),相转移催化剂(2%),回流反应5h,蒸除溶剂后再减压蒸馏,取132℃/0.67kPa馏分,反应总收率92.3%。该法操作简单,适于工业化生产。 相似文献
6.
二乙二醇二缩水甘油醚合成工艺研究 总被引:2,自引:0,他引:2
以二乙二醇为原料,采用正交实验法研究了二乙二醇二缩水甘油醚的合成工艺条件。考察了反应温度、原料配比、反应时间以及催化剂用量对反应的影响。确定了反应的最佳条件:反应温度80℃,醇烷物质的量比为1∶2 0,反应时间8h,催化剂加入量为总物料质量的0 1%。 相似文献
7.
8.
醇和酚的缩水甘油醚是由醇或酚和环氧氯丙烷在三氟化硼乙醚络合物催化作用下进行开环反应,然后再用碱进行消除反应而完成。 相似文献
9.
10.
以对苯二酚、环氧氯丙烷为原料,乙醇作溶剂,四丁基溴化铵为相转移催化剂,在碱性条件下,环氧氯丙烷经开环和闭环反应,合成对苯二酚二缩水甘油醚。通过正交试验确证反应的较佳工艺条件为:在氮气保护下,开环反应温度为45℃,n(对苯二酚):n(环氧氯丙烷):n(氢氧化钠)=1:18:1,开环反应时间3h;闭环反应温度33℃,n(对苯二酚):n(氢氧化钠)=1:2.2,反应时间为4h。通过红外光谱和~1HNMR对产物结构表征。 相似文献
11.
以月桂醇和二氯丙醇为原料,在相转移催化剂四丁基硫酸氢铵(TBAHS)存在下合成了月桂基缩水甘油醚,通过测定产品环氧值的方法来计算产品的收率。采用单因素实验和正交试验相结合,考察了原料摩尔比、碱加入量、反应时间和反应温度等对月桂基缩水甘油醚收率的影响,并用1HNMR和IR等对产物结构进行了表征。正交试验极差和方差分析表明,因素影响大小依次为:原料摩尔比碱加入量反应时间反应温度,在优化工艺条件n(二氯丙醇)∶n(月桂醇)=1.2∶1,n(氢氧化钠)∶n(月桂醇)=2.2∶1,50℃下反应4 h,月桂基缩水甘油醚的收率可达81.3%。 相似文献
12.
13.
14.
Linear medium density polyethylene (LMDPE) was functionalized with allyl glycidyl ether (AGE) in an internal laboratory mixer in the presence of peroxide. AGE is a bifunctional monomer, which forms unstable and energetically rich macroradicals. Upon increasing the peroxide content chain scission and grafting yield were favored. The degree of functionalization was determined by means of a calibration function for Fourier-transformed infrared spectroscopy (FTIR). Grafting AGE onto LMDPE led to a small loss of crystallinity, as evidenced by differential scanning calorimetry (DSC) and X-ray diffractometry analyses. Composites of LMDPE or functionalized LMDPE-AGE and cellulose were prepared in the mixer with filler contents ranging from 20 to 50 wt%. Composites of AGE functionalized LMDPE and filler content higher than 30 wt% presented tensile properties superior to that observed for composites with unmodified LMDPE. Scanning electron microscopy (SEM) on the composites fracture surface evidenced good interfacial adhesion between LMDPE-AGE and cellulose fibers. 相似文献
15.
相转移催化法合成十二烷基缩水甘油醚 总被引:1,自引:0,他引:1
以十二醇和二氯丙醇为原料,用相转移催化剂直接合成了十二烷基缩水甘油醚。考察了催化剂种类、原料摩尔比、反应时间和反应温度对十二烷基缩水甘油醚收率的影响。结果表明,以四丁基溴化铵为催化剂,甲苯为溶剂,n(十二醇)∶n(二氯丙醇)=1∶1.60,反应温度50℃,反应时间4 h,十二烷基缩水甘油醚收率可达73.2%。用IR、1HNMR对产物结构进行了表征,采用测定产品环氧值的方法来计算十二烷基缩水甘油醚的收率。 相似文献
16.
17.
18.
Jordi Guilera Roger Bringué Eliana Ramírez Carles Fité Javier Tejero 《American Institute of Chemical Engineers》2014,60(8):2918-2928
An option to introduce bioethanol to diesel, improving at the same time its fuel quality, is by adding ethyl octyl ether (EOE). It can be obtained successfully by the dehydration reaction between ethanol and 1‐octanol over acidic ion‐exchange resins. In the present work, the kinetic study of EOE synthesis on Amberlyst 70 in the liquid phase is performed in a 20‐cm3 fixed‐bed reactor and in a 100‐cm3 batch reactor at 423–463 K and 2.5 MPa. EOE synthesis takes place together with diethyl ether (DEE) formation as main side reaction. A mechanistic kinetic model in terms of component activities is proposed for EOE synthesis (Ea=105 ± 4 kJ/mol) and for DEE formation (Ea =100 ± 5 kJ/mol). Reaction rates were highly inhibited by the adsorption of the formed water on Amberlyst 70. The inhibitor effect of water is well represented as a competitive adsorption with alcohols reactants on the catalysts surface. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2918–2928, 2014 相似文献
19.
20.
Shuai Qian Xiaoyang Liu Christoffer Heath Turner Jason E. Bara 《American Institute of Chemical Engineers》2022,68(3):e17533
Conversion of epichlorohydrin to glycidyl ethers creates versatile precursors that can be transformed into a variety of molecular species with glycerol skeletons, enabling the design of molecules with highly tailored functionalities. The synthesis of 2,2,2-trifluoroethyl glycidyl ether (TFGE, IUPAC name: 2-[(2,2,2-trifluoroethoxy)methyl]oxirane, CAS# 1535-91-7) was optimized to provide high yield/selectivity and good “green metrics.” TFGE was then used as a platform molecule in the synthesis of asymmetric glycerol 1,3-diether-2-alcohol derivatives, which were subsequently transformed to 1,2,3-triethers or 1,3-diether-2-ketones. The density, viscosity, and CO2 solubility of each molecule were measured and compared with those of other glycerol-derived compounds as well as compounds with similar functional groups. Furthermore, quantum chemical calculations were performed to understand the structure–property–performance relationships of these molecules for CO2 absorption. Based on the results in this work, we foresee that TFGE (and similar glycidyl ethers) would offer great flexibility in molecular design of green solvents and precursors to more complex compounds. 相似文献