首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用H3PO4为活化剂、稻壳为原料,通过微波和马弗炉两种方法制备活性炭。详细考察了浸渍时间、料液比、活化剂浓度、微波功率或活化温度、以及活化时间的影响。结果显示,在磷酸浓度35%、料液质量比1∶4、浸渍时间3 h的条件下,采用400 W微波功率辐射8 min,制备的活性炭亚甲基蓝吸附值达到232 mg/g,若采用马弗炉600℃焙烧10 min,活性炭的亚甲基蓝吸附值达到226 mg/g。  相似文献   

2.
采用H3 PO4为活化剂、稻壳为原料,通过微波和马弗炉两种方法制备活性炭。详细考察了浸渍时间、料液比、活化剂浓度、微波功率或活化温度、以及活化时间的影响。结果显示,在磷酸浓度35%、料液质量比1:4、浸渍时间3 h的条件下,采用400 W微波功率辐射8 min,制备的活性炭亚甲基蓝吸附值达到232 mg/g,若采用马弗炉600℃焙烧10 min,活性炭的亚甲基蓝吸附值达到226 mg/g。  相似文献   

3.
研究了制备梧桐树叶基活性炭的影响因素。以深秋梧桐树叶为原料,采用微波辐照磷酸活化法制备了梧桐树叶基活性炭,并对影响梧桐树叶基活性炭吸附性能的因素进行了研究。选取微波功率、辐照时间、液固比、活化剂浓度为影响因素,以碘吸附值作为评价指标,通过正交实验确定了梧桐树叶基活性炭的最佳制备条件;分析了各影响因素对梧桐树叶基活性炭性能的影响程度。以碘吸附值作为评价指标,最佳水平组合为微波功率800 W、辐照时间8 min、活化剂浓度80%、液固比为3 mL.g-1,在此条件下制备的梧桐树叶基活性炭碘吸附值大于618.78 mg.g-1。各影响因素对梧桐树叶基活性炭性能的影响程度依次为活化时间>液固比>微波功率>磷酸浓度。  相似文献   

4.
用褐煤活化一步法制备活性炭的研究   总被引:1,自引:0,他引:1  
介绍了以褐煤为原料,磷酸为活化剂,硫酸为添加剂,采用炭活化一步法制备活性炭的实验,讨论了浸渍温度、炭活化温度、炭活化时间、磷酸的浓度、磷酸溶液与褐煤的液固比、硫酸的用量等主要因素对活性炭性能的影响。结果表明,适宜的工艺条件为:浸渍温度为80℃,炭活化温度为400℃,炭活化时间为60min,磷酸质量分数为40%,磷酸溶液与褐煤的液固比为5:1,硫酸的用量为褐煤质量6%。在该适宜的工艺条件下制备的活性炭,强度为88.2%,比表面积为1 158.6 m2/g,吸碘值为946.5 mg/g,吸亚甲基蓝值为203.4mg/g。  相似文献   

5.
磷酸活化微波辐照花生壳制备活性炭   总被引:3,自引:0,他引:3  
以花生壳为原料、磷酸为活化剂,微波加热制备活性炭。研究了活化剂浓度、料液比、微波功率、活化时间对活性炭吸附性能及收率的影响。采用单因素实验,以活性炭的亚甲基蓝脱色力为考察指标,确定了微波辐照花生壳制备活性炭的最佳工艺条件为:活化剂浓度为40%,料液比为1∶3,微波功率为462 W,活化时间为20 min。  相似文献   

6.
以巴旦杏核壳为原料,采用微波辐照法制备活性炭。考察了活化条件对活性炭得率和吸附性能的影响。研究结果表明,在活化剂种类、活化剂用量、微波功率和辐照时间4个因素中,微波辐照时间对活性炭质量指标影响最大,延长时间可以提高其产品的得率和吸附性能。巴旦杏核壳基质活性炭的最佳制备工艺:巴旦杏核壳10g,固液比1:3(g:mL),磷酸质量分数40%、浸溃24h,微波功率640W、活化时间16min。在此条件下制得的活性炭的亚甲基蓝吸附值为231.5mg/g,活性炭得率为56.8%。二级动力学模型能很好的描述巴旦杏核壳活性炭对亚甲基蓝大分子的吸附动力学过程。吸附符合Freundlich吸附等温线方程。  相似文献   

7.
以瓜子壳为原料,磷酸为活化剂,通过微波法制备出具有高吸附效率的活性炭,与四氧化三铁结合成磁性活性炭粒子,研究活化温度、磷酸浓度、浸渍比、微波时间对活性炭吸附性能的影响,通过XRD、红外光谱对其外貌与官能团进行分析,通过吸附等温线、吸附动力学探讨了其机理。结果表明,最佳制备活性炭的工艺条件为:活化温度120℃,浸渍比4 g/15 m L,磷酸浓度20%,微波时间25 min,测得其碘吸附值为887. 349 mg/g,亚甲基蓝吸附量70 mg/g,磁性活性炭最佳碳/四氧化三铁为60%。红外谱图显示四氧化三铁与活性炭之间通过油酸相结合,有大量的羧酸基团。吸附等温线与吸附动力学表明,磁性活性炭粒子为均匀单层化学吸附。  相似文献   

8.
油茶壳用微波加热磷酸法制活性炭   总被引:2,自引:0,他引:2  
以油茶果壳为原料,用磷酸作活化剂,采用微波加热法制备粉状活性炭。按4因素3水平的正交表设计试验方案,研究磷酸浓度、料液混合比、活化温度、活化时间等4个因素对产品亚甲基蓝吸附值的影响。在磷酸质量分数60%,料液质量比1:2.0,活化温度550℃,活化时间75 min的条件下,活性炭的亚甲基蓝吸附值可达226 mg/g,A法焦糖脱色率达100%以上,灰分为4.6%~5.2%。油茶果壳可用微波加热磷酸活化法制取液相脱色活性炭。  相似文献   

9.
制药污水处理厂污泥制活性炭的研究   总被引:5,自引:1,他引:5  
研究了以制药污水处理厂污泥为原料,分别以磷酸和氯化锌为活化剂制备污泥活性炭,选取活化剂浓度、固液比、活化温度及活化时间等因素,通过正交试验确定最佳工艺参数,并以果壳作添加剂提高活性炭性能。通过静动态吸附实验,探讨了污泥活性炭作为水处理吸附剂的去除效果。结果表明:氯化锌活化,氯化锌浓度40%,活化时间30min,活化温度600℃,固液比为1∶2—1∶3,污泥活性炭对COD的静动态饱和吸附量为31.3、28.14mg/g,色度去除率>85%。  相似文献   

10.
《应用化工》2022,(6):1370-1373
以瓜子壳为原料,磷酸为活化剂,通过微波法制备出具有高吸附效率的活性炭,与四氧化三铁结合成磁性活性炭粒子,研究活化温度、磷酸浓度、浸渍比、微波时间对活性炭吸附性能的影响,通过XRD、红外光谱对其外貌与官能团进行分析,通过吸附等温线、吸附动力学探讨了其机理。结果表明,最佳制备活性炭的工艺条件为:活化温度120℃,浸渍比4 g/15 m L,磷酸浓度20%,微波时间25 min,测得其碘吸附值为887. 349 mg/g,亚甲基蓝吸附量70 mg/g,磁性活性炭最佳碳/四氧化三铁为60%。红外谱图显示四氧化三铁与活性炭之间通过油酸相结合,有大量的羧酸基团。吸附等温线与吸附动力学表明,磁性活性炭粒子为均匀单层化学吸附。  相似文献   

11.
微波辐射氢氧化钾法制备黄麻杆活性炭工艺   总被引:2,自引:0,他引:2  
研究了以黄麻杆为原料,微波辐射黄麻杆氢氧化钾法制备活性炭的工艺,讨论了碱炭比,活化时间,微波功率对活性炭吸附性能和得率的影响。研究表明,碱炭比为1,活化时间为14min,微波功率为700W时制得的活性炭碘吸附值为1264.02mg/g、亚甲基蓝吸附值为210mL/g,活化得率11.29%。  相似文献   

12.
以碘吸附值、亚甲基蓝吸附值及活性炭得率为考察指标,选取对糠醛渣活性炭性质影响较大的浸渍比、磷酸质量分数、活化温度、保温时间4个因素进行L16(45)正交试验对磷酸活化法制备糠醛渣活性炭的工艺条件进行优化。由正交试验结果得到磷酸活化的最佳工艺条件为:磷酸质量分数60%,浸渍比2.5:1,活化温度550 ℃,保温1.5 h,此条件下制得的活性炭样品的碘吸附值为839.6 mg/g,亚甲基蓝吸附值为260.3 mg/g,得率为46.8%,比表面积为830.20 m2/g,孔容积为0.502 cm3/g,孔径集中在0.8~2.5 nm,具有丰富的中孔和微孔。  相似文献   

13.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

14.
油茶果壳活性炭的制备及其对苯酚的吸附   总被引:2,自引:0,他引:2  
余少英 《应用化工》2010,39(6):823-826
以油茶果壳为原料,60%的磷酸溶液为活化剂制备了油茶果壳活性炭,探讨了料液比、活化温度与时间对油茶果壳活性炭吸附苯酚性能的影响。结果表明,在活化温度为600℃,活化时间为90 min,料液比(g∶g)为1∶3时,制备的油茶果壳活性炭对苯酚的吸附效果最好。油茶果壳活性炭对苯酚吸附的最佳条件为:在30℃,0.1 g油茶果壳活性炭对100 mL的500 mg/L苯酚吸附5 h后,吸附量达到了218.0 mg/g。  相似文献   

15.
为优化木质活性炭制备的工艺条件,以农林废弃物花生壳为原料,磷酸为主活化剂,硫酸为辅助活化剂,利用响应面模型分析磷酸质量分数、浸渍比(活化剂体积与花生壳质量比)、活化时间、活化温度对活性炭性能的影响。结果表明:通过Box-Behnken试验建立的二次多项式数学模型的P值都小于0.000 1,校正决定系数(R2)分别为0.990 2和0.997 8,变异系数(CV) < 10%,试验的可信度和精确度高,回归方程成立。通过二次回归模型得到磷酸-硫酸活化法制备花生壳基活性炭的最佳工艺条件为花生壳粉末1 g,磷酸质量分数57.7%,浸渍比2:1,活化时间117 min,活化温度550 ℃。在最佳工艺条件下,制备的活性炭亚甲基蓝吸附值为147.2 mg/g,碘吸附值1 022.03 mg/g,实际值与预测值接近,重复性好。利用磷酸-硫酸活化法制备的花生壳基活性炭的内部中小孔较发达,具有较强的吸附能力和脱附能力。  相似文献   

16.
曾旭腾  颜幼平 《广东化工》2010,37(8):127-129
文章以刚果红作为处理对象,探讨了初始浓度、活性炭加入量、pH、微波功率和微波照射时间对处理效果的影响。研究结果表明,含氮染料在水溶液中能在粉末活性炭协助下被微波快速降解:投加2.0 g/L的活性炭,对25 mL的50 mg/L微波照射1.5 min,能达到76.33%的去除率;在同样的条件下,降解率随着活性炭投加量和微波照射时间的增加而上升,最高可达91.78%。  相似文献   

17.
以废弃桉木为原料,使用微波磷酸制备活性炭。采用正交实验优化了活性炭的制备工艺条件。结果表明,在微波功率800 W,桉木粉30 g条件下,磷屑比对产品的苯酚吸附值影响显著,磷屑比和微波辐照时间对产品的得率影响显著;制备活性炭的较优工艺条件为:桉木粉30 g,磷屑比为2∶1(质量比),磷酸溶液的质量浓度为70%,浸渍时间20 h,微波辐照时间为25 m in。在此条件下制备的活性炭得率为37.8%,产品的苯酚吸附值为154.3 mg/g。  相似文献   

18.
磷酸法水稻秆活性炭的制备   总被引:3,自引:1,他引:2  
以水稻秆为原料,采用磷酸活化法制备活性炭。研究了浸渍比、活化温度对活性炭样品吸附性能的影响,并对其微结构进行N2吸附等温线、热重-微商热重法(TG-DTG)、扫描电子显微镜(SEM)等表征。结果表明:水稻秆适合作为磷酸法活性炭的原料,吸附性能达到市售脱色活性炭的指标要求。在浸渍比为3∶1、活化温度 450 ℃、活化时间 60 min 的条件下,制得活性炭的亚甲基蓝吸附值 215 mg/g,碘吸附值 855 mg/g,A法焦糖脱色率 110 %,BET比表面积 967.72 m2/g,总孔容积 1.23 cm3/g,中孔率 84.6 %,平均孔径 4.6 nm。  相似文献   

19.
以生物质炭为原料,采用氯化锌活化制备高比表面积微孔生物质活性炭,研究了浸渍比、活化剂浓度、活化温度与活化时间等条件对生物质活性炭吸附性能的影响,利用氮气吸附脱附、扫描电子显微镜、傅里叶红外光谱、X射线衍射等技术对生物质活性炭表面微观结构、形貌特征及化学结构进行了分析。结果表明,制备生物质活性炭的适宜工艺条件为:浸渍比为3,活化剂质量分数为40%,活化温度为600℃,活化时间为90min。在该条件下制备的生物质活性炭对亚甲基蓝的吸附值为213mg/g,超过国家水处理用活性炭一级品标准。经测试生物质活性炭的BET比表面积高达631.2m2/g,平均孔径2.23nm,总孔容为0.352cm3/g;孔隙结构发达,孔径分布狭窄,孔形状为排列整齐的蜂窝状结构,含有大量的微孔,84.4%的孔集中在2nm以内;表面存在醇羟基、羰基、醚、酚等含氧官能团。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号