首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
邓玲  陈善华  吴骏  邱娟 《应用化工》2014,(3):522-526
与LiFePO4相比,单斜结构的磷酸钒锂(Li3V2(PO4)3)具有更高的Li+扩散系数和更高的放电电压、能量密度和高的比容量,已成为锂离子电池正极材料的研究热点之一。综述了近年来Li3V2(PO4)3的主要合成方法、充放电机理及其掺杂改性的研究现状,并且对Li3V2(PO4)3的发展趋势进行了展望。  相似文献   

2.
锂离子电池正极材料Li3V2(PO4)3研究进展   总被引:1,自引:0,他引:1  
锂离子电池正极材料Li3V2(PO4)3具有环保、安全性能好、成本低廉、结构稳定、电化学性能较好等特点,吸引了研究者的广泛关注.本文对Li3V2(PO4)5的结构、制备方法和电化学性能的研究现状进行了综述,并对其进行了展望.Li3V2(PO4)5很有希望产业化,进而取代目前市场上的主流材料LiCoO2。  相似文献   

3.
锂离子电池正极材料Li3V2(PO4)3具有环保、安全性能好、成本低廉、结构稳定、电化学性能较好等特点,吸引了研究者的广泛关注。本文对Li3V2(PO4)5的结构、制备方法和电化学性能的研究现状进行了综述,并对其进行了展望Li3V2(PO4)5很有希望产业化,进而取代目前市场上的主流材料LiCoO2。  相似文献   

4.
吴骏  陈善华  邓玲  邱娟 《陕西化工》2014,(4):651-653,657
在碳粉填埋保护条件下,分别以草酸、硝酸锂、磷酸二氢铵和偏钒酸铵为碳源、锂源、磷源和钒源,采用固相合成法,在900,1 000,1 100℃下制备了Li3V2(PO4)3/C正极材料。X射线衍射、扫描电子显微镜和充放电分析测试表明,900,1 000,1 100℃焙烧均可获得较纯且粒径为50 nm~3μm的Li3V2(PO4)3/C;随焙烧温度升高,合成产物中的LiVP2O7杂质相含量下降;在0.1 C充放电倍率下,900,1 000,1 100℃合成的Li3V2(PO4)3/C充放电30次后容量保持率分别为80%,98.5%和95.7%。  相似文献   

5.
锂离子电池正极材料磷酸钒锂的研究进展   总被引:1,自引:0,他引:1  
Li3V2(PO4)3因具有优异的电化学性能,成为目前倍受关注的锂离子电池正极材料。介绍了单斜结构磷酸钒锂[α-Li3V2(PO4)3]的结构及充放电机理,概述了几种主要的制备Li3V2(PO4)3方法,包括了固相法、溶胶-凝胶法、微波法。同时阐述了几种主要方法用来对Li3V2(PO4)3电化学性能进行改性研究,对该材料的发展前景进行了展望。  相似文献   

6.
自锂离子电池被发现以来,对锂离子电池的正极材料的研究也趋于白热化.继LiCoO2之后兴起了一系列可以作为锂离子电池正极的材料.由于稳定性好,安全性能高,绿色环保而且资源比较丰富,LiFePO4和Li3V2(PO4)3成为锂离子正极材料的候选材料之一,也是现在的研究重点.此文章主要对LiFePO4和Li3V2(PO4)3的结构特点,二者复合材料的复合机制以及电化学性能进行论述,并对LiFePO4和Li3V2(PO4)3复合锂离子电池正极材料的应用及发展方向进行说明.  相似文献   

7.
用一步碳热还原法制备了Li3V2-xCux(PO4)3/C(x=0.00、0.02、0.05、0.08、0.10、0.15)复合正极材料,并研究了掺杂对材料结构、微观形貌、充放电性能的影响。结果表明掺杂少量铜(Ⅱ)不会影响材料Li3V2(PO4)3的基本结构,但会在Li3V2(PO4)3中形成电子缺陷,提高晶体内部原子的无序化程度,降低极化和电荷转移电阻。从而改善材料的电化学性能。Li3V1.98Cu0.02(PO4)3/C的10 C放电容量比Li3V2(PO4)3/C提高了20 mA.h/g,具有较好的倍率性能。  相似文献   

8.
以LiH2PO4、LiF和V2O5为原料,蔗糖为还原剂,用碳热还原法合成了Li3V2[(PO4)1-xFx]3/C(x=0、0.02、0.05、0.08、0.10和0.15),并用X射线衍射、Fourier变换红外光谱、循环伏安、交流阻抗谱和恒流充放电技术研究了F-掺杂对材料结构和电化学性能的影响.结果表明:F-掺杂Li3V2(PO4)3/C与纯Li3V2(PO4)3/C均为单斜结构,但少量的F-掺杂可提高电极反应可逆程度和电导率,降低电荷传递阻抗;在所得的F-掺杂材料中,Li3V2[(PO4)0.95F0.05]3/C具有较好的电化学性能.在3.0~4.2V (vs.Li/Li+)循环时,电极的0.5C放电容量为124.4 mA·h/g,50次循环后容量保持率为98.5%,15C下的放电容量为84.7mA·h/g,50次循环后容量保持率为97.4%,而Li3V2(PO4)3/C的仅为59.2 mA·h/g和89.0%.  相似文献   

9.
吴骏  陈善华  邓玲  邱娟 《应用化工》2014,(4):651-653,657
在碳粉填埋保护条件下,分别以草酸、硝酸锂、磷酸二氢铵和偏钒酸铵为碳源、锂源、磷源和钒源,采用固相合成法,在900,1 000,1 100℃下制备了Li3V2(PO4)3/C正极材料。X射线衍射、扫描电子显微镜和充放电分析测试表明,900,1 000,1 100℃焙烧均可获得较纯且粒径为50 nm~3μm的Li3V2(PO4)3/C;随焙烧温度升高,合成产物中的LiVP2O7杂质相含量下降;在0.1 C充放电倍率下,900,1 000,1 100℃合成的Li3V2(PO4)3/C充放电30次后容量保持率分别为80%,98.5%和95.7%。  相似文献   

10.
采用溶胶-碳热还原法制备了Li3V2-xMx(PO4)3/C(M=Ti,Fe,Ce;x=0.06)复合正极材料,通过XRD、SEM、恒流充放电和电化学阻抗等测试方法研究了Ti4+、Fe3+和Ce3+适量掺杂对材料结构、形貌和电化学性能的影响。结果表明:Ti4+、Fe3+和Ce3+的适量掺杂并未改变材料结构,对材料形貌也未产生明显的影响,但可以在一定程度上降低一次颗粒的尺寸,提高材料的电导率。所有掺杂材料的充放电性能和循环稳定性明显改善,其中Li3V1.94Fe0.06(PO4)3/C表现出最优的电化学性能。  相似文献   

11.
以V2O5、NH4H2PO4、Li2CO3、(CH3COO)2Mn.4H2O原料,以葡萄糖和抗坏血酸为复合还原剂及碳源,通过常温还原-低温烧结法制备锂离子电池正极材料Li3V(2-2x/3)Mnx(PO4)3/C(x=0,0.03,0.06,0.09,0.12)。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试对该正极材料的物相、结构、微观形貌以及电化学性能进行了表征。结果表明,Mn2+的掺杂对磷酸钒锂电化学性能的发挥影响很大,其中当锰掺杂量x=0.09时材料表现出最佳的电化学性能,0.2 C倍率条件下首次放电比容量131 mAh/g,循环50次后容量衰减仅为4.02%。  相似文献   

12.
采用溶解还原、沉淀、球磨、灼烧、稀HNO3处理等工艺过程,将铁泥中的Fe以Fe2O3的形式回收。以得到的Fe2O3为原料经过高温固相法合成Li Fe PO4/C作为锂离子电池的正极材料。分别研究了"球磨"和"稀HNO3处理"两个工艺步骤对产品性能的影响。XRD分析结果表明Li Fe PO4/C属橄榄石型晶系纯相。SEM图片显示Li Fe PO4/C颗粒均匀,尺寸分布在100~150 nm之间。通过电池充放电测试表征了Li Fe PO4/C的电化学性能,实验结果表明,由于采用优化的工艺过程制备的Fe2O3中适量保留了铁泥中的Co、Cr和Ni元素,所合成的Li Fe PO4/C表现出较好的循环稳定性和倍率性能。  相似文献   

13.
吴显明 《精细化工》2011,28(6):573-577
采用溶胶-凝胶法合成Li1.3Al0.3Ti1.7(PO4)3粉末,向Li1.3Al0.3Ti1.7(PO4)3粉末中添加不同摩尔分数的Li3PO4助熔剂烧结制备锂离子固体电解质Li1.3Al0.3Ti1.7(PO4)3烧结片。通过X射线衍射仪、扫描电子显微镜研究合成产物的结构与形貌,采用循环伏安及交流阻抗技术研究合成产物的氧化-还原电位、离子电导率和活化能。结果表明,添加与未添加Li3PO4助熔剂的Li1.3Al0.3Ti1.7(PO4)3烧结片具有相似的X射线衍射结果。添加Li3PO4的Li1.3Al0.3Ti1.7(PO4)3烧结片空隙率较小,更为致密。添加Li3PO4对Li1.3Al0.3Ti1.7(PO4)3的氧化-还原电位影响不大。在所有添加Li3PO4助熔剂的Li1.3Al0.3Ti1.7(PO4)3烧结片中,添加摩尔分数1%Li3PO4的烧结片具有最高的离子电导率6.15×10-4S.cm-1和最低的活化能0.314 2 eV。  相似文献   

14.
以Li3PO4和Fe(3PO4).28H2O为原料,采用固相法成功制备了锂离子电池正极材料LiFePO4,并讨论了Li3PO4用量对材料的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试等手段对最终产物的物相、形貌和电化学性能进行了表征。结果表明,按计量比制备的LiFePO4样品具有较好的电化学性能,以0.1、0.5、1和5 C(1C=150 mA/g)的倍率进行充放电,首次放电比容量分别为135.6、123.8、116.2和56.5 mAh/g。磷酸锂过量8%制备的样品具有较好的高倍率性能,5C时放电比容量为80.3 mAh/g;而磷酸锂过量30%的样品则具有很好的小倍率放电比容量,0.1C时放电比容量为151.1 mAh/g。  相似文献   

15.
以磷酸法制备的活性炭、WO3、AgNO3、Na2HPO4为原料,采用共沉淀法制备WO3/C/Ag3PO4复合材料。采用X 射线衍射(XRD)、傅里叶红外光谱(FT-IR)、光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)和固体紫外漫反射(UV-DRS)技术对其进行表征。结果表明,Ag3PO4与WO3之间形成异质结。在可见光照射下,以双酚A(BPA)模拟污染物,评价WO3/C/Ag3PO4复合材料的光催化降解性能,并提出 WO3/ C/Ag3PO4 复合材料对BPA的光降解机理。结果表明,在一系列光催化剂中, 23% WO3/ 7% C/ Ag3PO4 复合材料在可见光下对10 mg/L BPA水溶液的降解率在90 min分钟达到95%,明显高于单一的Ag3PO4和WO3。经过3次循环重复,BPA的降解率仍能保持在74%,表明WO3/C/Ag3PO4光催化剂具有良好的稳定性。光催化机理表明,自由基?O- 2和h 在降解过程中起主要作用。  相似文献   

16.
采用机械活化-高温固相法制备了锂离子电池正极材料LiCo1/3Mn1/3Ni1/3O2研究球磨方式与n(Li)/n(M)对合成产物结构与性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征。研究结果表明,优化试验条件下制备得到的材料具有良好的循环性能,在电压范围2.7~4.2V内,充放电的电流值为20mA/g时,初始放电比容量为160mA·h/g,30次循环后容量保持率为96.98%。  相似文献   

17.
首次报道了溶剂热法合成一种新型锂离子电池正极材料LiFe1/3Mn1/3Co1/3PO4,并对其结构和电化学性能进行了研究。合成的LiFe1/3Mn1/3Co1/3PO4属正交晶系结构,扫描电镜照片显示合成的材料是长度300~400nm,宽度200.250nm,厚度约100nm的板状结构。以碳包覆后的LiFe1/3Mn1/3Co1/3PO4作为正极材料组装电池进行充放电测试,在3.5V,4.1V,4.6V出现了三个平台,分别对应Fe^3+/Fe^2+,Mn^3+/Mn^2+,Co^3+/Co^2+氧化还原电对,0.2C时首次放电容量达到142.2mAh/g,经过50次循环后可逆容量仍保持在92.6mAh/g。  相似文献   

18.
采用2-甲基环氧氯丙烷、尿素为原料.对合成3-氯-2-甲基-2-羟基丙基脲的方法进行了研究。最佳工艺条件为:原料体积比V(2-甲基环氧氯丙烷)/V(50%尿素水溶液)=0.58,反应温度为70~80℃,反应时间为75min,C(Na3PO4)=0.1mol/L10mL.所得产物的环氧值和氯离子生成率都比较小,产物以3-氯-2-甲基-2-羟基丙基脲为主。  相似文献   

19.
在X2CO3–MoO3(X=Li,K)助熔剂体系下,采用顶部籽晶缓冷法生长出厘米级磷酸三镓(Ga3PO7)晶体。实验结果表明:X2CO3–MoO3助熔剂适合Ga3PO7单晶的生长。通过测量Ga3PO7单晶的紫外–近红外光谱和中红外光谱研究了其基本光学性能。在K2CO3–MoO3助熔剂体系下,生长的Ga3PO7晶体(10...  相似文献   

20.
以V_2O_5、LiOH、NH_4H_2PO_4、Al(OH)_3和柠檬酸为原料采用溶胶-凝胶法合成V位掺杂Al3+的Li_3V_(2-x)Al_x(PO_4)_3/C复合材料,仔细研究Al3+掺杂对磷酸钒锂材料电化学性能的影响,确定最佳的Al掺杂量。同时借助各种分析手段(如XRD、SEM、TG-DTA)对掺杂后Li_3V_(2-x)Al_x(PO_4)3/C材料结构变化进行探究,深入理解V位掺杂对电化学性能产生作用的内在机理。Li_3V_2-xAlx(PO_4)_3/C(x=0,0.02,0.05,0.1,0.15,0.2)首次放电比容量分别为103.7 m Ah/g,105.7 m Ah/g,108.4 m Ah/g,141.1 m Ah/g,130.1 Ah/g,124.8 m Ah/g。在一定范围内,随着Al3+量的提高,相应的Li3V2-xAlx(PO4)3/C的首次放电比容量也不断的增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号