首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Municipal solid waste incinerator (MSWI) fly ash was regarded as a hazardous material because concentrations of TCLP leaching solution exceeded regulations. Previous studies have investigated the characteristics of thermally treated slag. However, the emissions of pollutant during the thermal treatment of MSWI fly ash have seldom been addressed. The main objective of this study was to evaluate the emission of Pb and PAHs from thermally co-treated MSWI fly and bottom ash process. The experimental parameters included the form of pretreatment, the proportion of bottom ash (bottom ash/fly ash, B/F=0, 0.1 and 1) and the retention time. The toxicity of thermally treated slag was also analyzed. The results indicated that (1) Pb emission occurred only in the solid phase and that PAHs were emitted from both solid and gas phases during thermal treatment process. (2) Washing pretreatment reduced not only the TCLP leaching concentration of Pb (from 15.75 to 1.67 mg/L), but also the emission of PAHs from the solid phase during thermal treatment process. (3) Adding bottom ash reduced the TCLP leaching concentration of thermally treated slag. (4) The concentration of Pb emission increased with retention time. (5) The thermal treatment reduced the toxicity of raw fly ash effectively, the inhibition ratio of raw fly ash and thermal treated slag were 98.71 and 18.35%, respectively.  相似文献   

2.
This study investigated the thermal resistance of lightweight concrete with recycled coal bottom ash and fly ash. Specimens were exposed to temperatures up to 800 °C then cooled to room temperature before conducting experiments. Compressive strength test, FF-RC test, TG analysis, and XRD analysis were performed to analyze the physicochemical effects of coal ashes on the thermal resistance of concrete. Test results indicated that both bottom ash and fly ash were associated with a substantial increase in the residual strength of thermal exposed concretes. The results were attributed to the surface interlocking effect and the smaller amount of SiO2 for bottom ash. For fly ash, the formation of pozzolanic C-S-H gel and tobermorite retained water at high temperatures, and the consumption of Ca(OH)2 lowered stress from rapid recrystallization after exposure to 600 °C. It was concluded that the incorporation of coal ashes allows for lightweight concrete with good thermal resistance.  相似文献   

3.
Municipal solid waste incinerator (MSWI) fly ash was frequently classified as hazardous materials as the metals' concentration of toxicity characteristic leaching procedure (TCLP) exceeded regulations. Many studies have focused on reducing the concentration of TCLP using thermal treatment and increasing the application of thermally treated slag. However, the metal patterns in MSWI fly ash with or without thermal treatment have seldom been addressed. The main objective of this study was evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure. The experimental parameters included the form of pretreatment, the proportion of bottom ash (bottom ash/fly ash, B/F=0, 0.1 and 1) and the retention time. The results indicated that (1) In comparison to raw fly ash, the distribution patterns of Pb, Cu and Cd become stable in thermally treated slag. (2) Washing pretreatment caused the Pb pattern to become stable, while the influence on Cu and Cd were not significant. (3) The distribution patterns of Pb, Cu, and Cd became more stable as the retention time increased. (4) Adding bottom ash could make the distribution patterns of Pb and Cd more stable.  相似文献   

4.
This study analyzed and compared the characteristics of bottom and fly ashes from three municipal solid waste incinerators (MSWIs) in Taiwan. Different incineration furnaces were investigated, including: (1) fluidized bed, (2) mass-burning, and (3) mass-burning linked rotary kiln. The particle size distribution, morphology, mineralogical and chemical composition, and leaching behavior of heavy metals of ash samples were evaluated. The results revealed that three types of incineration processes have different characteristic for ashes due to transportation and mixing system inside furnace. Particle size distribution indicated that 28.5% of MSWI-B bottom ash has lower than 180 microm and 61.2% of MSWI-A fly ash has larger than the 250 microm. The leaching concentration of Pb exceeded the regulatory level set by the Taiwan EPA in fly ashes from MSWI-B and MSWI-C, and thus must be considered hazardous wastes. Specifically, the leaching concentration of heavy metals of fly ashes from MSWI-A (fluidized bed incinerator) was lower than that of the others, and was corresponded to the regulatory levels. Therefore, a fluidized bed incineration process appears a potential of handling heavy metals for ashes. The result was also provided the valuable information for incinerator design and operation.  相似文献   

5.
The present study reports on the performance characteristics of the centrifugal slurry pump with multi-sized particulate slurry of bottom ash and fly ash mixtures. The performance characteristic of the pump was experimentally evaluated at rotational speed 1450 rpm for bottom ash slurries with and without the addition of fly ash in the concentration range of 10% to 50% (by weight). Addition of fly ash in the bottom ash was varied from 10% to 30% (by weight). The pump total head, overall efficiency, and pump input power at different flow rates were evaluated. The performance characteristics results show that the value of head and the efficiency of the pump depend on the solid concentration. It was also observed that the performance parameter of the pump strongly depends on slurry properties. The addition of fine particles fly ash in the coarser particles of bottom ash slurry, leads to reduce the additional head losses in the pump. The pump performance in terms of head and efficiency improved with addition of fly ash in bottom ash slurry.  相似文献   

6.
Fly ashes from different power stations in Australia (Collie, Eraring, Tarong) and Mongolia (4th thermal power station, Ulaanbaatar city) have been characterized by various techniques. It was determined that the Australian fly ashes are class F while the Mongolian fly ashes are class C. Due to their chemical and mineralogical differences, the fly ashes behaved differently when alkali activated to make geopolymers. The influence of various parameters on the preparation of geopolymers have been investigated and the results are used to establish a procedure for the routine manufacture of alkaline activated products. The applicability of using fly ash for building structural elements, corrosion resistant and thermally resistant materials will be presented.  相似文献   

7.
Coal fly ash procured from Guru Gobind Singh Super Thermal Power Plant, Ropar, Punjab, India, was analyzed for its mineralogical content and thermal stability by x-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and physicochemical properties. XRD studies showed that major crystalline phases observed were quartz (SiO2) and aluminum silicon oxide (Al4.52Si1.48) with macro- and microelement (N, P, K, Mg, Zn, S, and Fe). Fly ash showed thermal stability up to 500°C and reduction in weight was up to 200°C, primarily due to loss of water and decarboxylation as revealed by TGA plots. FTIR of fly ash showed that the most prominent peaks in the spectra corresponded to Si–O and Al–O stretch vibrations. Coarse-grain accumulation of fly ash indicated the presence of 70% of fine-grained particles of 0.075 mm. Coal fly ash was alkaline in nature (pH 7.85 ± 0.03) with an electrical conductivity of 0.14 ± 0.02 µS m?1, water holding capacity of 62%, low bulk density of 0.99 g cm?3, and a surface area of 0.96 m2 g?1. With properties similar to that of soil coal, fly ash represents a suitable material for use in specific quantities as a soil amending agent in agriculture.  相似文献   

8.
Different types of municipal solid waste incinerator (MSWI) fly and bottom ash were extracted by TCLP and PBET procedures. The biotoxicity of the leachate of fly ash and bottom ash was evaluated by Vibrio fischeri light inhibition test. The results indicate the following: (1) The optimal solid/liquid ratio was 1:100 for PBET extraction because it had the highest Pb and Cu extractable mass from MSWI fly ash. (2) The extractable metal mass from both fly ash and bottom ash by PBET procedure was significantly higher than that by TCLP procedure. (3) The metal concentrations of fly ash leachate from a fluidized bed incinerator was lower than that from mass-burning and mass-burning combined with rotary kiln incinerator. (4) The TCLP and PBET leachate from all MSWI fly ash samples showed biotoxicity. Even though bottom ash is regarded as a non-hazardous material, its TCLP and PBET leachate also showed biotoxicity. The pH significantly influenced the biotoxicity of leachate.  相似文献   

9.
The presence of heavy metals in municipal solid waste incineration (MSWI) fly ash is of environmental concern due to their leaching potential in landfill environments. Sequential chemical extraction was performed on fly ash samples from a large-scale municipal solid waste incineration plant in East China. The transformation of the mineralogical species of fly ash during the sequential extraction was studied using X-ray fluorescence (XRF) and X-ray powder diffraction (XRD). The leaching behavior of heavy metals such as zinc, lead, cadmium and copper in MSWI fly ash was considered to have a dependency relationship with the components of calcium, such as aphthitalite, calcite, anhydrite and calcium aluminate or calcium aluminosilicate.  相似文献   

10.
粉煤灰机械研磨后热学性质变化的研究   总被引:1,自引:0,他引:1  
研究了粉煤灰经过机械研磨后的热学性质的变化。不同的机械研磨方式 ,粉煤灰的热学性质表现不一样 ;对于同一种机械研磨方式 ,不同粉煤灰的热学性质有一些共同之处。粉煤灰机械处理之后热学活性的增加 ,机械热效应在研磨中起重要作用。DTA峰温的提前 ,实质是粉煤灰颗粒在机械能的作用下位能升高 ,不稳定趋势加大  相似文献   

11.
This paper reports the results of experiments done to examine the explosibility of the waste products (fly ash and bottom ash) from pulverized fuels (coal and petroleum coke). Tests were conducted for the fly and bottom ashes alone and also for selected fly ashes blended with the fuels. The explosion parameters of interest were explosion pressure and rate of pressure rise. The fly ashes showed no propensity to explode, whereas one of the bottom ashes did show limited explosibility. Both findings can be explained with reference to the volatile matter content of the ashes. Admixture of either coal or petroleum coke with fly ash resulted in explosible mixtures at volatile contents in the range of 7-13%, with the value being dependent on the composition of the mixture components and their particle sizes.  相似文献   

12.
In thermal power plants, fly ash is collected at the bottom of electrostatic precipitator (ESP) hoppers and transported to common sump for further disposal to the ash pond by slurry pipelines. The fly ash from different fields of ESP hoppers vary widely in particle size as well as quantity. Depending on the sequence of evacuation, the overall particle size distribution (PSD) would vary with time which in turn would affect the head requirement in the high concentration slurry disposal (HCSD) system. Fly ash samples from different fields of ESP hoppers of a thermal power plant have been analyzed for their physical properties namely the PSD, specific gravity, settling characteristics, pH of the slurry, etc. and for rheological properties in the concentration range of 60–70% (by weight). The particle size (dwm) of the fly ash samples decreases with the increase in ESP field, whereas the static settled concentration and specific density increase. The pH values of all samples are almost constant and nonreactive in nature. The rheological properties namely yield stress and Bingham viscosity of the fly ash slurries from different fields of ESP hoppers increase with increase in concentration. Further at any given concentration, these parameters exhibit a strong dependence on particle size. Using these properties and treating the distribution of particles across the pipe cross section as homogeneous in the concentration range of 60–70% (by weight), CFD computations are made to evaluate the head requirement in a HCSD pipeline. The head loss increases with increase in concentration for all fields of ESP hoppers. The present study also shows that head requirement varies significantly by mixing different proportion of fly ash from different ESP fields.  相似文献   

13.
This paper presents an investigation of the compressive strength and the durability of lignite bottom ash geopolymer mortars in 3% sulfuric acid and 5% sodium sulfate solutions. Three finenesses of ground bottom ash viz., fine, medium and coarse bottom ash were used to make geopolymer mortars. Sodium silicate, sodium hydroxide and curing temperature of 75 °C for 48 h were used to activate the geopolymerization. The results were compared to those of Portland cement and high volume fly ash mortars. It was found that the fine bottom ash was more reactive and gave geopolymer mortars with higher compressive strengths than those of the coarser fly ashes. All bottom ash geopolymer mortars were less susceptible to the attack by sodium sulfate and sulfuric acid solutions than the traditional Portland cement mortars.  相似文献   

14.
Mine backfilling with power plant ash is gaining increasing attention from the power and mining industries for its bulk disposal. In the USA and other countries, mine backfilling with ash is considered as a viable option for stability improvement, subsidence control, and mine site rehabilitation. This paper presents the results of rheological studies conducted on fly ash and mixtures of fly ash and bottom ash samples collected from NTPC Talcher, Odisha. The complex hydro-mixture slurry indicated non-Newtonian pseudo-plastic behavior in the mass concentration range of 60–67.5%. A non-Newtonian power law head loss model was used to evaluate the head loss of ash slurry in pipelines having nominal bores in the range of 100–300 mm. The results indicated that the addition of bottom ash to fly ash slurry at a given solids concentration has a beneficial effect in reducing the pumping power requirement. A design chart for the fly ash mixture slurry has been formulated indicating the variation in backfilling rate with relative head requirements for a given length of pipeline for a range of pipe sizes and transport velocities. This is expected to provide relevant pipe flow and operational conditions for bulk disposal of fly ash for mine backfilling purpose.  相似文献   

15.
The behaviour of Al in MSW incinerator fly ash during thermal treatment   总被引:3,自引:0,他引:3  
Fly ash from municipal solid waste (MSW) incinerators contains leachable metals, including potentially hazardous heavy metals. The metal content of the fly ash can be reduced by thermal treatment, which vaporizes the volatile metal compounds. After heat treatment of fly ash at 1000 degrees C for 3 h, less metal was able to be leached from the thermally treated ash than from the ash without thermal treatment. Al and Cr were the exceptions. These metals were more soluble in the ash that had been thermally treated. This paper focuses on the leaching behaviour of Al only. Both simple and sequential extraction leaching tests showed that the leachable Al for the heat-treated fly ash is about twice that of the untreated fly ash. The sequential test further revealed that (i) the majority of the leachable Al is associated with Fe-Mn oxides in the fly ash, and (ii) most of the unleachable Al resides in the silicate matrices of the heat-treated and untreated fly ash. Pure chemicals, Al(2)O(3), CaO and CaCl(2), simulating the relevant ingredients in the fly ash, were used for studying their reactions at 1000 degrees C. The aluminum compounds were identified by X-ray Diffraction (XRD). Two new chemical phases produced by the thermal treatment were identified; Ca(AlO(2))(2) and 12CaO.7Al(2)O(3). Their formation suggests a mechanism whereby thermal treatment of fly ash would produce more soluble Al.  相似文献   

16.
The aim of this research was to study the production of calcium sulfoaluminate-belite (CŜAB) cement from industrial waste materials via hydrothermal-calcination process. Lignite fly ash and bottom ash were used as starting materials for comparison. Other waste materials viz., Al-rich sludge and flue gas desulfurization gypsum were also key players in raw mixes for the synthesis of CŜAB cement. For lignite fly ash as a starting material, mixed phases between ye'elimite and larnite were obtained, whereas for lignite bottom ash as starting material, only ye'elimite was obtained The hydration reaction was studied in terms of heat evolution, setting time, compressive strength and hydration product formation with various gypsum contents. The results showed a rapid formation of ettringite as a main hydration product mixed with calcium silicate hydrate, monosulfate and strätlingite phases as minority, with a fast final setting time of 24–26 min and high early compressive strength of 16.0 and 18.0 MPa in 1 day for CŜAB cements made of fly ash and bottom ash, respectively.  相似文献   

17.
This study examines the suitability of Talcher coal fly ash for stowing in the nearby underground coal mines based on their physico-chemical and mineralogical analysis. The physical properties such as bulk density, specific gravity, particle size distribution, porosity, permeability and water holding capacity etc. have been determined. From the chemical characterization it is found that the ash samples are enriched predominantly in silica (SiO2), alumina (Al2O3) and iron oxides (Fe2O3), along with a little amount of CaO, and fall under the Class F fly ash category. In addition, the mineral phases identified in the ash samples are quartz, mullite, magnetite, and hematite. The particle morphological analysis revealed that the ash particles are almost spherical in shape and the bulk ash porous in nature. From the particle size and permeability point of view, pond ash may be considered a better stowing material than fly ash.  相似文献   

18.
One of the main issues associated with fly ash is the variation in the fineness of fly ash produced within a plant and between thermal power plants, due to the variation in the quality of coal used and the production technique adopted in which pelletization of fly ash becomes complex. In this paper, the influence of fineness of fly ash is studied by collecting typical samples of fly ash from two thermal power plants. Significance of the factors influencing the pelletization of fly ash was statistically determined by adopting 24 with eight run and 25 with sixteen run fractional factorial design for fly ash with fineness of 414 m2/kg and 257 m2/kg, respectively. Finer fly ash exhibits higher pelletization efficiency as compared to coarser fly ash. Addition of clay binders like bentonite and kaolinite enhanced the pelletization efficiency of coarser fly ash. Amount of binder content and moisture content varies with type of binder used (with fly ash having a fineness of 257 m2/kg), which is attributed to the difference in plasticity index. Addition of clay binder changes the relative influence of pelletization factors.  相似文献   

19.
This study describes the partitioning of 20 trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, P, Pb, Sb, Se, Sn, Tl, V, Zn) and eight major and minor elements (Al, Ca, Fe, K, Mg, Na, Si, Ti) during the combustion of high ash content lignite. The experiments were carried out in the 0.3 MW(t) Middle East Technical University (METU) atmospheric bubbling fluidized bed combustor (ABFBC) test rig with and without limestone addition. Inert bed material utilized in the experiments was bed ash obtained previously from the combustion of the same lignite without limestone addition in the same test rig. Concentrations of trace elements in coal, limestone, bottom ash, cyclone ash and filter ash were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). Partitioning of major and minor elements are influenced by the ash split between the bottom ash and fly ash and that the major proportion of most of the trace elements (As, Ba, Cr, Hg, Li, Mo, Ni, Sn, V, Zn) are recovered in fly ash. Limestone addition shifts the partitioning of Ba, Cr, Mo, Ni, Sn, V, Zn from bottom ash to fly ash.  相似文献   

20.
Acid and alkaline resistance of class F fly ash based geopolymer pastes has been investigated. As prepared geopolymers showed high solubility in both strong alkali and acid solutions. Calcination of the fly ash based geopolymers at 600 °C resulted in a decrease of amorphous component from 63.4 to 61.6 wt.%. However, the solubility of the Al, Si and Fe ions in 14 M NaOH and 18% HCl after 5 days immersion decreased from 1.3 to 16-fold in comparison to as prepared geopolymer samples. Calcination of the geopolymers also resulted in a 30% reduction in compressive strength. Acid and alkali resistance of the geopolymers investigated strongly depends on mineralogical composition change of the calcined geopolymer. Partial crystallisation of non-reacted fly ash particles in the geopolymer decreases its solubility in acid and alkali solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号