首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the mechanisms of intracellular induction of oxidative DNA damage, we have investigated the concentrations of intracellular reactive oxygen species and the amounts of 8-hydroxydeoxyguanosine (8OHdG), a mutagenic oxidative DNA damage, in human neutrophil-like cells, dimethylsulfoxide-differentiated HL60 (DMSO-HL60). We determined intracellular concentrations of hydrogen peroxide and superoxide by flow cytometry with dichlorofluorescein diacetate and hydroethidine, respectively. We determined the 8OHdG amounts with an electrochemical detector connected to HPLC after anaerobic sample processing. DMSO-HL60 releases superoxide upon stimulation with phorbol myristate acetate, and the released superoxide dismutates to hydrogen peroxide. Stimulation of DMSO-HL60 with 100 nM phorbol myristate acetate increased intracellular hydrogen peroxide, superoxide and 8OHdG (control). Addition of 1000 U/ml catalase decreased hydrogen peroxide (31.3% of control) and 8OHdG (20.3%). Addition of 100 U/ml SOD decreased superoxide (18.7%) and 8OHdG (41.6%). Addition of 1 mM deferoxamine decreased 8OHdG (30.4%), but increased hydrogen peroxide (129.6%). Addition of 200 microM 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonic acid decreased superoxide (59.9%) and 8OHdG (42.0%). Addition of 0.4% ethanol had no effect on superoxide concentration (102.2%), but tended to decrease hydrogen peroxide (83.5%) and 8OHdG (84.3%). Pretreatment of DMSO-HL60 with 0.1 mM FeSO4 increased 8OHdG (117.3%), but decreased hydrogen peroxide (75.8%). These findings indicate that the extracellularly released superoxide and hydrogen peroxide diffuse into the cell, but that such reactive oxygen species are not the direct molecules to induce 8OHdG. Our results suggest that 8OHdG is induced by the hydroxyl radical which is generated from intracellular hydrogen peroxide and superoxide-reduced Fe.  相似文献   

2.
Ferric nitrilotriacetate (Fe-NTA) and ferric citrate (Fe-citrate) were compared with respect to their potential to induce oxidative DNA damage in V79 Chinese hamster cells. DNA base modifications, including 8-hydroxyguanine (7,8-dihydro-8-oxoguanine), were quantified by the frequency of lesions recognized by the bacterial Fpg protein (formamidopyrimidine-DNA glycosylase) in combination with the alkaline unwinding assay. Fe-NTA induced oxidative DNA damage in a time- and dose-dependent manner, yielding significant increases in Fpg-sensitive sites above background after incubation for 24 or 48 h with 500 and 250 microM respectively. At both time points the frequency of DNA base modifications exceeded the number of DNA strand breaks. In contrast, neither DNA strand breaks nor Fpg-sensitive sites were detected after treatment with Fe-citrate at concentrations up to 2 microM for 24 or 48 h; this inactivity of Fe-citrate was independent of the molar ratio of iron to ligand (1:1, 1:2, 1:10 or 1:20). The results indicate that the cellular damage induced by ferric iron depends strongly on the actual complex applied, possibly due to differences in the intracellular distribution, which in turn may affect the availability of iron for redox reactions at or in close proximity to the DNA.  相似文献   

3.
We have investigated the properties of an in vitro cell survival assay that uses as its endpoint the ability to form polyploid cells (polykaryons) in the presence of cytochalasin B (CB). The criterion for survival is that a polykaryon-forming unit (PFU) must reach the arbitrary DNA content of at least 16C. The age-dependence of PFU sensitivity to 137Cs irradiation was determined using V79-379A cells synchronized at mitosis. Cells assayed as PFUs demonstrated much less variation in radiosensitivity with age than did clonogens, but the changes in curve shape were qualitatively similar. In both assays mitotic cells yielded an exponential survival curve while that obtained at 5 h (mid-late S) had a marked quadratic component. Owing to the small overall variation in PFU survival with age, at doses greater than about 25 Gy the surviving fraction at 5 h was lower than in mitosis. In both V79-379A and HeLa S3 cells, PFUs demonstrated a capacity for split-dose recovery and yielded recovery ratios at 2.6 at 50 Gy in V79 and 1.5 at 20 Gy in HeLa. Since these ratios were much lower than in clonogens at the same dose, we suggest that this is consistent with an association that we have previously demonstrated between PFU response and the clonogenic initial slope. In an attempt to clarify the DNA lesions to which PFUs may be sensitive, we determined PFU response following exposure to 254-nm UV irradiation. In contrast with ionizing radiation, PFU response to UV was very similar to that of clonogens. This suggests that following UV exposure the absence of cytokinesis in polykaryons may confer less protection than in the case of ionizing radiation, possibly due to fundamental differences in the spectrum of DNA lesions produced.  相似文献   

4.
It has been estimated that over three million workers in the USA are potentially exposed to silica or other mineral dusts. Results of epidemiological studies evaluating whether silica or glass fibers increase lung cancer risk to the exposed workers are inconclusive. Detection of DNA damage in cells exposed to genotoxic agents is being used to assess the carcinogenic potential of environmental agents. The alkaline (pH > 13) single cell gel/comet (SCG) assay was used to determine and compare DNA damage in cultured Chinese hamster lung fibroblasts (V79 cells) and human embryonic lung fibroblasts (Hel 299 cells) exposed to crystalline silica (Min-U-Sil 5), amorphous silica (Spherisorb), carbon black, and glass fibers (AAA-10). V79 or Hel 299 cells were exposed to these mineral dusts for 3 h at various concentrations. Min-U-Sil 5 and AAA-10, at almost all concentrations tested, caused a significant increase in DNA migration measured as tail length in both V79 and Hel 299 exposed cells. However, the increase was much higher in V79 then in Hel 299 cells for Min-U-Sil 5. Tail length was also increased relative to controls after amorphous silica treatment, but not to the same extent as that induced by crystalline silica. Exposure to carbon black did not induce DNA migration at any of the concentrations tested. These results indicate that silica and glass fibers, but not carbon black, can induce DNA damage in mammalian cells, and that crystalline silica has a higher DNA-damaging activity than amorphous silica. For glass fibers, induction of DNA damage in both V79 and Hel 299 cells was observed even at a concentration 10 times lower than silica and the response was similar in both cell lines. These results suggest that the SCG/comet assay is useful for the detection of DNA damage caused by occupationally related dusts/particles.  相似文献   

5.
A simple and convenient technique for in situ quantification of DNA damage induced by 1-(4-amino-2-methyl-5-pyrimidinyl) methyl-3-(2-chloro-ethyl)-3-nitrosourea hydrochloride (ACNU) an alkylating agent, or irradiation was demonstrated in C6 glioma cells using a single cell gel electrophoresis. Treatment with ACNU or irradiation caused a dose dependent DNA damage which was detected by measuring the length of migration of fragmentary DNA in individual cells. Wild type C6 cells treated with ACNU (0, 10, 30, 60 micrograms ml-1) for one hour showed longer distance of migration of DNA than the ACNU-resistant subtype cells (C6R), indicating that ACNU-sensitive C6 cells were more vulnerable to ACNU than C6R cells. The results of DNA migration in C6 and C6R cells treated with ACNU were consistent with that from MTT assay which had been regarded as a standard method for chemosensitivity test. Furthermore, a time course study for DNA repair activity of C6 and C6R cells was also performed by measuring the length of DNA migration after incubation (0, 15, 30, 60, 120 min) of cells treated with 60 micrograms ml-1 ACNU. C6R cells repaired DNA damage more rapidly than C6 cells. In addition, the technique was also used to measure the DNA damage in C6 cells exposed to 0, 2, 6, 8, 10 Gy of x-ray irradiation, and a dose-dependent DNA migration after radiation injury was observed. This technique appears to be simple and useful for assessing chemosensitivity or radiosensitivity in individual glioma cells.  相似文献   

6.
Prior ultraviolet (UV) irradiation of the site of application of hapten on murine skin reduces contact sensitization, impairs the ability of dendritic cells in the draining lymph nodes (DLN) to present antigen, and leads to development of hapten-specific suppressor T lymphocytes. We tested the hypothesis that UV-induced DNA damage plays a role in the impaired antigen-presenting activity of DLN cells. First, we assessed the location and persistence of cells containing DNA damage. A monoclonal antibody specific for cyclobutyl pyrimidine dimers (CPD) was used to identify UV-damaged cells in the skin and DLN of C3H mice exposed to UV radiation. Cells containing CPD were present in the epidermis, dermis, and DLN and persisted, particularly in the dermis, for at least 4 d after UV irradiation. When fluorescein isothiocyanate (FITC) was applied to UV-exposed skin, the DLN contained cells that were Ia+, FITC+, and CPD+; such cells from mice sensitized 3 d after UV irradiation exhibited reduced antigen-presenting function in vivo. We then assessed the role of DNA damage in UV-induced modulation of antigen-presenting cell (APC) function by using a novel method of increasing DNA repair in mouse skin in vivo. Liposomes containing T4 endonuclease V (T4N5) were applied to the site of UV exposure immediately after irradiation. This treatment prevented the impairment in APC function and reduced the number of CPD+ cells in the DLN of UV-irradiated mice. Treatment of unirradiated skin with T4N5 in liposomes or treatment of UV-irradiated skin with liposomes containing heat-inactivated T4N5 did not restore immune function. These studies demonstrate that cutaneous immune cells sustain DNA damage in vivo that persists for several days, and that FITC sensitization causes the migration of these to the DLN, which exhibits impaired APC function. Further, they support the hypothesis that DNA damage is an essential initiator of one or more of the steps involved in impaired APC function after UV irradiation.  相似文献   

7.
Dietary antioxidants may influence cancer risk and aging by modifying oxidative damage. The effect of graded dietary doses of the antioxidant vitamins C and E on oxidative DNA damage was studied in the liver of guinea-pigs under normal conditions. Like human beings, guinea-pigs cannot synthesize ascorbate and alpha-tocopherol. In one experiment, three groups of 6-8 guinea-pigs were fed diets containing 15 mg of vitamin E/kg chow and three different amounts of vitamin C (33,660 or 13,200 mg/kg) for 5 weeks. In a second experiment, three groups of seven guinea-pigs were fed diets containing 660 mg of vitamin C/kg and three different amounts of vitamin E (15, 150 or 1500 mg/kg) for 5 weeks. The three graded levels of each vitamin respectively represent marginal deficiency, an optimum supplementation and a megadose. Oxidative damage to liver DNA was estimated by measuring 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo8dG) referred to deoxyguanosine (dG) by means of high-performance liquid chromatography with simultaneous electrochemical-coulometric and ultraviolet detection. The level of ascorbate in the liver was 0.034 +/- 0.051, 1.63 +/- 1.06 and 1.99 +/- 0.44 micromol/g in the low, medium and high dose ascorbate groups (59-fold variation). The liver concentration of alpha-tocopherol was 28 +/- 11, 63 +/- 18 and 187 +/- 34 nmol/g in the low, medium and high dose alpha-tocopherol groups (7-fold variation). The level of oxo8dG in the liver DNA was 1.89 +/- 0.32, 1.94 +/- 0.78 and 1.93 +/- 0.65 per 10(5) dG in the low, medium and high dose ascorbate groups (no effect: P > 0.05). In the low, medium and high dose alpha-tocopherol groups oxo8dG level in the liver DNA was 2.85 +/- 0.70, 2.74 +/- 0.66 and 2.61 +/- 0.92 per 10(5) dG (no effect: P > 0.05). It is concluded that even very large variations in the content of the antioxidant vitamins C and E in the diet and liver have no influence on the steady-state level of oxidative damage to guanine in the liver DNA of normal unstressed guinea-pigs.  相似文献   

8.
The objective of this study was to explore the relationship between oxidative molecular damage and the aging process by determining whether such damage is associated with the rate of aging, using the adult housefly as the experimental organism. Because the somatic tissues in the housefly consist of long-lived postmitotic cells, it provides an excellent model system for studying cumulative age-related cellular alterations. Rate of aging in the housefly was manipulated by varying the rate of metabolism (physical activity). The concentration of 8-hydroxydeoxyguanosine (80HdG) was used as an indicator of DNA oxidation. Exposure of live flies to x-rays and hyperoxia elevated the level of 8OHdG. The level of 8OHdG in mitochondrial as well as total DNA increased with the age of flies. Mitochondrial DNA was 3 times more susceptible to age-related oxidative damage than nuclear DNA. A decrease in the level of physical activity of the flies was found to prolong the life-span and corresponding reduce the level of 8OHdG in both mitochondrial and total DNA. Under all conditions examined, mitochondrial DNA exhibited a higher level of oxidative damage than total DNA. The 8OHdG levels were found to be inversely associated with the life expectancy of houseflies. The pattern of age-associated accrural of 8OHdG was virtually identical to that of protein carbonyl content. Altoghether, results of this study support the hypothesis that oxidative molecular damage is a causal factor in senescence.  相似文献   

9.
1,4-Phenylenebis(methylene)selenocyanate (p-XSC) is an effective chemopreventive agent against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung adenoma in female A/J mice. While p-XSC can effectively inhibit NNK-induced DNA methylation in female A/J mice and in male F344 rats, its effect on NNK-induced oxidative DNA damage had not been determined. Thus, the effect of p-XSC on the levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in lung DNA from A/J mice and F344 rats treated with NNK was examined. Mice were given NNK by gavage (0.5 mg/mouse in 0.2 ml corn oil, three times per week for 3 weeks) or by a single i.p. injection (2 mg/mouse in 0.1 ml saline) while maintained on a control diet (AIN-76A) or control diet containing p-XSC at 10 or 15 p.p.m. (as Se) starting 1 week before NNK administration and continuing until termination. Mice were killed 2 h after the last NNK gavage in the multiple administration protocol or 2 h after the single i.p. injection. Treatment with NNK by gavage significantly elevated the levels of 8-OH-dG in lung DNA of A/J mice from 0.7 +/- 0.1 to 1.6 +/- 0.2 adducts/10(5) 2'-deoxyguanosine (dG) (P < 0.001), while dietary p-XSC (at 10 p.p.m. Se) prevented significant elevation of the levels of this lesion caused by NNK, keeping them at 0.9 +/- 0.1 adducts/10(5) dG (P < 0.003). Injection of NNK in saline also significantly increased the levels of 8-OH-dG in lung DNA of A/J mice from 1.2 +/- 0.6 to 3.6 +/- 0.8/10(5) dG adducts (P < 0.01), while dietary p-XSC (at 15 p.p.m. Se) kept these levels at 1.9 +/- 0.5 adducts/10(5) dG (P < 0.03). Rats were given a single i.p. injection of NNK (100 mg/kg body wt) in saline while being maintained on control diet (AIN-76A) or control diet containing p-XSC (15 p.p.m. as Se) starting 1 week before NNK administration and continuing until termination. The rats were killed 2 h after injection. Treatment with NNK using this protocol significantly elevated the levels of 8-OH-dG in lung DNA of F344 rats from 2.6 +/- 0.5 to 3.5 +/- 0.5 adducts/10(5) dG (P < 0.03), while dietary p-XSC (at 15 p.p.m. Se) kept the levels of this lesion at 2.2 +/- 0.6 adducts/10(5) dG (P < 0.01). Our findings suggest that the chemopreventive efficacy of p-XSC against NNK-induced lung tumorigenesis in A/J mice and F344 rats may be due in part to inhibition of oxidative DNA damage.  相似文献   

10.
Exposure to the solar ultraviolet spectrum that penetrates the Earth's stratosphere (UVA and UVB) causes cellular DNA damage within skin cells. This damage is elicited directly through absorption of energy (UVB), and indirectly through intermediates such as sensitizer radicals and reactive oxygen species (UVA). DNA damage is detected as strand breaks or as base lesions, the most common lesions being 8-hydroxydeoxyguanosine (8OHdG) from UVA exposure and cyclobutane pyrimidine dimers from UVB exposure. The presence of these products in the genome may cause misreading and misreplication. Cells are protected by free radical scavengers that remove potentially mutagenic radical intermediates. In addition, the glutathione-S-transferase family can catalyze the removal of epoxides and peroxides. An extensive repair capacity exists for removing (1) strand breaks, (2) small base modifications (8OHdG), and (3) bulky lesions (cyclobutane pyrimidine dimers). UV also stimulates the cell to produce early response genes that activate a cascade of signaling molecules (e.g., protein kinases) and protective enzymes (e.g., haem oxygenase). The cell cycle is restricted via p53-dependent and -independent pathways to facilitate repair processes prior to replication and division. Failure to rescue the cell from replication block will ultimately lead to cell death, and apoptosis may be induced. The implications for UV-induced genotoxicity in disease are considered.  相似文献   

11.
UV irradiation interferes with the induction of T cell-mediated immune responses, in part by causing cells in the skin to produce immunoregulatory cytokines. Recent evidence implicates UV-induced DNA damage as a trigger for the cascade of events leading to systemic immune suppression in vivo. However, to date, there has been no direct evidence linking DNA damage and cytokine production in UV-irradiated cells. Here we provide such evidence by showing that treatment of UV-irradiated murine keratinocytes in vitro with liposomal T4 endonuclease V, which accelerates the repair of cyclobutylpyrimidine dimers in these cells, inhibits their production of immunosuppressive cytokines, including interleukin 10. Application of these liposomes to murine skin in vivo also reduced the induction of interleukin 10 by UV irradiation, whereas liposomes containing heat-inactivated T4 endonuclease V were ineffective. These results support our hypothesis that unrepaired DNA damage in the skin activates the production of cytokines that down-regulate immune responses initiated at distant sites.  相似文献   

12.
The objective of this study was to determine the relative importance of the first six complementation groups of the nucleotide excision repair cross-complementing genes (ERCC1-ERCC6) and the first complementation group of the X-ray repair cross-complementing genes (XRCC1), in the repair of DNA damage induced by the in vitro active cyclophosphamide (CP) derivatives 4-hydroperoxycyclophosphamide (4HC) and phosphorodiamidic mustard (PM). We compared the sensitivity of the wild-type CHO cell line, AA8, with that of the CHO mutant cell lines UV4 and UV20 (ERCC1-), UV5 (ERCC2-), UV24 (ERCC3-), UV41 (ERCC4-), UV135 (ERCC5-), UV61 (ERCC6-), and EM9 (XRCC1-). Cell survival was determined using both growth inhibition and conventional clonogenic assays. The yield of DNA crosslinks in selected cell lines was determined using an ethidium bromide fluorescence assay. RESULTS: The rank ordering of sensitivity to both 4HC and PM, based on the combined survival data, was UV41/UV4/UV20 > > UV61/UV24/UV135/EM9 > or = UV5 approximately AA8. Thus mutations in the ERCC1 and ERCC4 genes impart a hypersensitivity to CP analogs. To confirm the importance of the ERCC1 gene for cellular resistance to 4HC and PM, UV20 cells were transfected with the human ERCC1 gene and subsequently exposed to 4HC and PM. The transfected cells displayed essentially wild-type resistance to both drugs. Furthermore, two interspecific hybrids derived from UV41, both of which retained the region of human chromosome 16 that harbors the ERCC4 gene, displayed essentially wild-type resistance to 4HC and PM, confirming the importance of ERCC4 for the repair of 4HC-induced DNA damage. When crosslinks were assayed after a 60-min treatment with 4HC or a 15-min treatment with PM, their yield paralleled the sensitivity of the cell lines to both drugs: UV41 cells showed markedly elevated levels of crosslinks, whereas AA8 and UV5 cells showed similar (low) levels of crosslinks. CONCLUSIONS: Our findings confirm the general pattern indicating that the ERCC1 and ERCC4 gene products are crucial for the repair of 4HC-induced DNA damage, while the other nucleotide excision repair genes examined are relatively unimportant. These data suggest that the hypersensitivity of ERCC1- and ERCC4- mutants to DNA crosslinking agents may reflect a defect in recombinational repair rather than nucleotide excision repair.  相似文献   

13.
Styrene 7,8-oxide and ethylene oxide are widely used genotoxic bulk chemicals, which have been associated with potential carcinogenic hazard for occupationally exposed workers. Both epoxides alkylate DNA preferentially at the N-7 position of guanine and consequently produce single-strand breaks and alkali labile sites in the DNA of exposed cells. In order to study the role of human microsomal epoxide hydrolase (hmEH) in protecting cells against genotoxicity of styrene 7,8-oxide and ethylene oxide, we expressed the cDNA of hmEH in V79 Chinese hamster cells. We obtained a number of cell clones that expressed functionally active epoxide hydrolase. Among these, the clone 92hmEH-V79 revealed an especially high enzymatic mEH activity toward styrene 7,8-oxide (10 nmol converted per mg of protein per min, measured in the 9,000 x g supernatant of the cell homogenate), that was 100 times higher than that determined in mock-transfected cells and within the range of mEH activity in human liver. Styrene 7,8-oxide-induced DNA single-strand breaks/alkali labile sites (dose range 10 microM to 1 mM styrene 7,8-oxide) measured by the alkaline elution technique were significantly lower in the 92hmEH-V79 cells as compared to the mock-transfected cells. The protection against styrene 7,8-oxide genotoxicity in 92hmEH-V79 cells could be abolished by addition of valpromide, a selective inhibitor of microsomal epoxide hydrolase. These results clearly show that the metabolism of styrene 7,8-oxide by hmEH in 92hmEH-V79 cells was responsible for the protection against styrene 7,8-oxide genotoxicity. On the other hand, no protective effect of epoxide hydrolase expression could be observed on ethylene oxide-induced DNA damage with the recombinant cell line over a dose range of 0.5-2.5 mM ethylene oxide. This selectivity of the protective effect on epoxide genotoxicity thus appears to be an important factor that must be taken into account for the prediction of the genotoxic risk of epoxides themselves or compounds that can be metabolically activated to epoxides.  相似文献   

14.
Ultraviolet (UV) irradiation of human cells induced expression of a stably maintained fusion gene consisting of the human immunodeficiency virus long terminal repeat promoter controlling the bacterial chloramphenicol acetyltransferase gene. Two experiments demonstrated that DNA damage can initiate induction: UV induction was greater in DNA repair-deficient cells from a xeroderma pigmentosum patient than in repair-proficient cells, and transfection of UV-irradiated DNA into unirradiated cells activated gene expression. Increased repair of cyclobutane pyrimidine dimers by T4 endonuclease V abrogated viral gene activation, suggesting that dimers in DNA are one signal leading to increased gene expression. This signal was spread from UV-irradiated cells to unirradiated cells by co-cultivation, implicating the release of soluble factors. Irradiation of cells from DNA repair-deficiency diseases resulted in greater release of soluble factors than irradiation of cells from unaffected individuals. These results suggest that UV-induced cyclobutane pyrimidine dimers can activate the human immunodeficiency virus promoter at least in part by a signal-transduction pathway that includes secretion of soluble mediators.  相似文献   

15.
The induction of apoptosis by ultraviolet (UV) radiation and other DNA damaging agents plays a critical role in monitoring the accumulation of genetic damage and the suppression of tumor development. We hypothesize that UVA and UVB induce apoptosis by modulating balances between p53 and/or bcl-2 genes. Using MCF-7 cells that express both wild-type P53 and Bcl-2 proteins, we demonstrated that UVA and UVB induced apoptosis through regulating expression of apoptosis promoting or inhibiting genes. UVA induced immediate apoptosis and downregulated bcl-2 expression. Bcl-2 expression was reduced by approximately 40% at 4 h post-150 kJ UVA irradiation per m2 with a maximum downregulation (over 70%) at 24 h. The dose-response studies revealed that significant reduction of bcl-2 expression was observed at UVA doses ranging from 50 to 200 kJ per m2; however, p53 levels were not affected by UVA. In contrast, UVB exhibited a entirely different action than UVA in that UVB substantially induced p53 expression, but had no effect on bcl-2 expression. The induction of P53 by UVB was dose and time dependent with the maximum expression at 24 h post-2 and post-4 kJ UVB irradiation per m2. Down-regulation of bcl-2 and fragmentation of DNA induced by UVA occurred earlier (approximately at 4 h) than upregulation of p53 and DNA fragmentation by UVB (12-24 h). These results suggest that UVA and UVB cause cell damage through different mechanisms and that the balances between the expression of p53 and bcl-2 may play an important role in regulating the apoptosis induced by UV irradiation.  相似文献   

16.
Folinic acid (FA), clinically called leucovorin, has been widely used as a nutrient supplement in dietary intake and is capable of inhibiting cytotoxicity and chromosomal damage induced by chemicals. However, data on its antigenotoxic effect on radiation-induced chromosomal damage are limited. The present study was, therefore, performed to investigate the effect of FA on radiation-induced (X-rays and UV radiation) micronuclei (MN) and structural chromosomal aberrations (SCA) concurrently in V79 Chinese hamster lung cells. Exponentially growing cells were exposed to five doses of X-rays (1-12 Gy) and UV radiation (50-800 microJ x 10(2)/cm2) and post-treated with 5 or 50 micrograms FA/ml of culture medium for 16 h. The slides were analyzed for the presence of MN and SCA using standard procedures. The results showed that X-ray treatment alone produced dose-related cytotoxicity as measured by nuclear division index (NDI) and mitotic index (MI). X-rays produced a clear dose-related clastogenicity as measured by percent of micronucleated binucleated cells (MNBN) (5-79%) and percent of aberrant cells (11-92%). FA at 5 micrograms/ml slightly decreased X-ray induced chromosomal damage in both assays; however, the inhibition was significant (12-46% of MNBN, 14-48% in aberrant cells) only when X-ray-treated cultures were post-treated with 50 micrograms FA/ml. Post-treatment of FA had no effect on X-ray induced cytotoxicity as measured by NDI and MI. A similar a dose-related increase in % MNBN (0.5-10.3%) and percent aberrant cells (6-35%) was produced by UV radiation treatment alone. There were significant percentages of MNBN and aberrant cell inhibitions at both 5 and 50 micrograms/ml in both assays. As in the case of X-ray-treated cells, there was a clear dose-related cytotoxicity in UV-treated cells alone. No reduction in NDI or MI was found when UV-exposed cells were post-treated with 5 or 50 micrograms of FA. These data demonstrate the beneficial effect of FA in decreasing radiation-induced chromosomal damage.  相似文献   

17.
Synchronized and asynchronously growing cells of a V79 sub-line of the Chinese hamster were either whole-cell irradiated ( gamma, 254 nm) or laser-UV-microirradiated ( gamma, 257 nm). Post-incubation with caffeine (1-2 mM) often resulted in chromosome shattering, which was a rare event in the absence of this compound. In experiments with caffeine, the following results were obtained. Shattering of all the chromosomes of a cell (generalized chromosome shattering, GCS) was induced by whole-cell irradiation at the first post-irradiation mitosis when the UV fluence exceeded a "threshold" value in the sensitive phases of the cell cycle (G1 and S). GCS was also induced by laser-UV-microirradiation of a small part of the nucleus in G1 or S whereas microirradiation of cytoplasm beside the nucleus was not effective. An upper limit of the UV fluence in the non-irradiated nuclear part due to scattering of the microbeam was experimentally obtained. This UV fluence was significantly below the threshold fluence necessary to induce GCS in whole-cell irradiation experiments. In other cells, partial nuclear irradiation resulted in shattering of a few chromosomes only, while the majority remained intact (partial chromosome shattering, PCS). G1/early S was the most sensitive phase for induction of GCS by whole-cell and partial nuclear irradiation. The frequency of PCS was observed to increase when partial nuclear irradiation was performed either at lower incident doses or at later stages of S. We suggest that PCS and GCS indicate 2 levels of chromosome damage which can be produced by the synergistic action of UV irradiation and caffeine. PCS may be restricted to microirradiated chromatin whereas GCS involves both irradiated and unirradiated chromosomes in the microirradiated nucleus.  相似文献   

18.
Styrene-7,8-oxide (SO), the major in vivo metabolite of styrene, is a genotoxic compound and a potential carcinogenic hazard to occupationally exposed workers. The aim of the present work was to investigate the ability of styrene exposure to induce formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in white blood cells (WBC) of boatbuilders occupationally exposed to styrene. The study of these adducts was conducted to see if styrene exposure can cause oxidative damage of DNA. The 8-OHdG/10(5) dG ratio from 17 styrene-exposed workers showed significant increases (mean +/- SD, 2.23 +/- 0.54, median 2.35, P < 0.001) in comparison to the controls (1.52 +/- 0.45, median 1.50). However, 11 out of 17 workers who were between the ages of 32 and 60 years and had been occupationally exposed to styrene for > 10 years showed higher 8-OHdG/10(5) dG ratios (2.31 +/- 0.62, median 2.37) in comparison to 6 workers with < 6 years of occupational styrene-exposure (2.11 +/- 0.36, median 2.05; P > 0.05, no significant difference between the two groups of workers). The studies presented here provide an indication that styrene exposure can result in oxidative DNA damage.  相似文献   

19.
To understand the cellular and biochemical nature of radioresistance in the strain M5 derived from Chinese hamster V79 cells, the sensitivity of the resistant cells towards CdCl2, Zn(Ac)2, and H2O2 by the colony forming ability has been tested. D0 values for these compounds in Chinese hamster V79 cells were 5.4 microM, 27.8 microM and 4.3 micrograms/ml respectively while for M5 cells these were 8.3 microM, 142.9 microM and 11.9 micrograms/ml respectively. The resistance to heavy metals as well as the oxidative damage could be reversed by the inhibition of glutathione synthesis by the drug buthionine sulfoximine (BSO). These set of data indicate that the cellular antioxidant glutathione plays an important role in the observed oxidant-resistant phenotype as well as heavy metal resistance in M5 cells.  相似文献   

20.
The mode of cell death induced by photodynamic treatment (PDT) was studied in two cell lines cultured in monolayer, V79 Chinese hamster fibroblasts and WiDr human colon adenocarcinoma cells. The cells were incubated with 5-aminolaevulinic acid (5-ALA) as a precursor for the endogenously synthesised protoporphyrin IX, which was activated by light. Free DNA ends, owing to internucleosomal DNA cleavage in apoptotic cells, were stained specifically with a fluorescent dye in the terminal deoxynucleotidyl transferase (TdT) assay. The free DNA ends were measured by flow cytometry and the fractions of apoptotic cells determined. Total cell death was measured in a cell survival assay to determine the necrotic fraction after subtraction of the apoptotic fraction. V79 cells did undergo apoptosis while WiDr cells were killed only through necrosis. With time, the apoptotic fraction of V79 cells increased until a maximum was reached about 3-4 h after ALA-PDT treatment. For increasing ALA-PDT doses, a maximal apoptotic fraction 75-85% of the cells was measured at about 85% of total cell death. The flow cytometric assay of apoptosis was confirmed by the typical ladder of oligonucleosomal DNA fragments obtained from agarose gel electrophoresis, by fluorescence micrographs visualising the induced free DNA ends and by electron micrographs showing the typical morphology of apoptotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号