首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper examines the problem of robust H/sub /spl infin// static output feedback control of a Takagi-Sugeno fuzzy system. The proposed robust H/sub /spl infin// static output feedback controller guarantees the L/sub 2/ gain of the mapping from the exogenous disturbances to the regulated output to be less than or equal to a prescribed level. The existence of a robust H/sub /spl infin// static output feedback control is given in terms of the solvability of bilinear matrix inequalities. An iterative algorithm based on the linear matrix inequality is developed to compute robust H/sub /spl infin// static output feedback gains. To reduce the conservatism of the design, the structural information of membership function characteristics is incorporated. A numerical example is used to illustrate the validity of the design methodologies.  相似文献   

2.
This paper examines the problem of designing an H/sub /spl infin// output feedback controller with pole placement constraints for singular perturbed Takagi-Sugeno (TS) fuzzy models. We propose a fuzzy H/sub /spl infin// output feedback controller that not only guarantees the /spl Lscr//sub 2/-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value, but also ensures closed-loop poles of each subsystem are in a prespecified linear matrix inequality (LMI) region. In order to alleviate the numerical stiffness caused by the singular perturbation /spl epsiv/, the design technique is formulated in terms of a family of /spl epsiv/-independent linear matrix inequalities. The proposed approach can be applied both standard and nonstandard singularly perturbed nonlinear systems. A numerical example is provided to illustrate the design developed in this paper.  相似文献   

3.
This paper studies the problem of H/sub /spl infin// output tracking control for nonlinear time-delay systems using Takagi-Sugeno (T-S) fuzzy model approach. An LMI-based design method is proposed for achieving the output tracking purpose. Illustrative examples are given to show the effectiveness of the present results.  相似文献   

4.
This work investigates the problem of robust output feedback H/sub /spl infin// control for a class of uncertain discrete-time fuzzy systems with time delays. The state-space Takagi-Sugeno fuzzy model with time delays and norm-bounded parameter uncertainties is adopted. The purpose is the design of a full-order fuzzy dynamic output feedback controller which ensures the robust asymptotic stability of the closed-loop system and guarantees an H/sub /spl infin// norm bound constraint on disturbance attenuation for all admissible uncertainties. In terms of linear matrix inequalities (LMIs), a sufficient condition for the solvability of this problem is presented. Explicit expressions of a desired output feedback controller are proposed when the given LMIs are feasible. The effectiveness and the applicability of the proposed design approach are demonstrated by applying this to the problem of robust H/sub /spl infin// control for a class of uncertain nonlinear discrete delay systems.  相似文献   

5.
In this note, sufficient conditions for H/sub /spl infin// output feedback stabilization of linear discrete-time systems are proposed via linear matrix inequalities (LMIs). In order to reduce conservatism existing in earlier LMI methods, auxiliary slack variables with structure are employed. It is shown that degree of freedoms by the introduction of auxiliary slack variables lead to more flexibility in obtaining an approximate solution of H/sub /spl infin// output feedback stabilization problems. Consequently, the proposed method can yield a less conservative result than earlier LMI methods. In particular, typical output feedback control problems, such as decentralized H/sub /spl infin// output feedback control and simultaneous H/sub /spl infin// output feedback control, can be more efficiently solved. Numerical examples are included to illustrate the advantages of the proposed LMI method.  相似文献   

6.
7.
Generally, it is difficult to design equalizers for signal reconstruction of nonlinear communication channels with uncertain noises. In this paper, we propose the H/sub /spl infin// and mixed H/sub 2//H/sub /spl infin// filters for equalization/detection of nonlinear channels using fuzzy interpolation and linear matrix inequality (LMI) techniques. First, the signal transmission system is described as a state-space model and the input signal is embedded in the state vector such that the signal reconstruction (estimation) design becomes a nonlinear state estimation problem. Then, the Takagi-Sugeno fuzzy linear model is applied to interpolate the nonlinear channel at different operation points through membership functions. Since the statistics of noises are unknown, the fuzzy H/sub /spl infin// equalizer is proposed to treat the state estimation problem from the worst case (robust) point of view. When the statistics of noises are uncertain but with some nominal (or average) information available, the mixed H/sub 2//H/sub /spl infin// equalizer is employed to take the advantage of both H/sub 2/ optimal performance with nominal statistics of noises and the H/sub /spl infin// robustness performance against the statistical uncertainty of noises. Using the LMI approach, the fuzzy H/sub 2//H/sub /spl infin// equalizer/detector design problem is characterized as an eigenvalue problem (EVP). The EVP can be solved efficiently with convex optimization techniques.  相似文献   

8.
The problem of observer design for Lipschitz nonlinear systems is considered. A new dynamic framework which is a generalization of previously used Lipschitz observers is introduced and the generalized sufficient condition that ensures asymptotic convergence of the state estimates is presented. The equivalence between this condition and an H/sub /spl infin// optimal control problem which satisfies the standard regularity assumptions in H/sub /spl infin// optimization theory is shown and a parameterization of all possible observers is also presented. A design procedure which is less restrictive than the existing design approaches is proposed, and a simulation example is given to illustrate the observer design.  相似文献   

9.
In this note, we develop an H/sub /spl infin//-type theory for a large class of discrete-time nonlinear stochastic systems. In particular, we establish a bounded real lemma (BRL) for this case. We introduce the notion of stochastic dissipative systems, analogously to the familiar notion of dissipation associated with deterministic systems, and utilize it in the derivation of the BRL. In particular, this BRL establishes a necessary and sufficient condition, in terms of a certain Hamilton Jacobi inequality (HJI), for a discrete-time nonlinear stochastic system to have l/sub 2/-gain/spl les//spl gamma/. The time-invariant case is also considered as a special case. In this case, the BRL guarantees necessary and sufficient conditions for the system to have l/sub 2/-gain/spl les//spl gamma/, by means of a solution to a certain algebraic HJI. An application of this theory to a special class of systems which is a characteristic of numerous physical systems, yields a more tractable HJI which serves as a sufficient condition for the underlying system to possess l/sub 2/-gain/spl les//spl gamma/. Stability in both the mean square sense and in probability, is also discussed. Systems that possess a special structure (norm-bounded) of uncertainties in their model are considered. Application of the BRL to this class of systems yields a linear state-feedback stabilizing controller which achieves l/sub 2/-gain/spl les//spl gamma/, by means of certain linear matrix inequalities (LMIs).  相似文献   

10.
11.
In this paper, an adaptive fuzzy controller for strict-feedback canonical nonlinear systems is proposed. The completely unknown nonlinearities and disturbances of the systems are considered. Since fuzzy logic systems can uniformly approximate nonlinear continuous functions to arbitrary accuracy, the adaptive fuzzy control theory is employed to derive the control law for the strict-feedback system with unknown nonlinear functions and disturbances. Moreover, H/sub /spl infin// tracking performance is applied to substantially attenuate the effect of the modeling errors and disturbances. Finally, examples are simulated to confirm the applicability of the proposed methods.  相似文献   

12.
In this note, a robust nonlinear controller for a nonlinear system subject to model uncertainties is proposed. Such a controller associates a "robust feedback linearization" with a robust linear H/sub /spl infin// controller. The robust feedback linearization exactly transforms the nonlinear system into a linear system equal to the linear approximation of the original nonlinear system around a nominal operating point. The robustness of the resulting overall nonlinear controller is proved by theoretical arguments and illustrated through an application example, the control of a magnetic bearing system.  相似文献   

13.
This note responds to the comments published by Ni Zhao and Fu-Chun Sun in IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B, vol. no. 34, 6, p. 2422, Dec. 2004. Note that Theorems 3.1 and 3.2 are correct. The errors in the proofs have been fixed.  相似文献   

14.
This note presents a new sufficient condition for the static output feedback stabilization of linear discrete-time systems. This new condition is expressed as a linear matrix inequality feasibility problem and hence easily tractable numerically. An extension of this condition is given in order to incorporate H/sub /spl infin// performance objectives. The applicability of the proposed approach is shown through numerical examples and compared to some recent methods.  相似文献   

15.
This paper investigates both robust H/sub /spl infin// analysis and synthesis problems involving observer-based fuzzy control via linear matrix inequality methods for which efficient optimization techniques are available. The observer and controller are capable of disturbance-rejection in the presence of unknown but bounded disturbance. We present results in a unified fashion applicable to both continuous- and discrete-time problems with or without uncertainty. Finally, the validity and applicability of the approach are demonstrated by examples.  相似文献   

16.
A novel fuzzy neural network (FNN) quadratic stabilization output feedback control scheme is proposed for the trajectory tracking problems of biped robots with an FNN nonlinear observer. First, a robust quadratic stabilization FNN nonlinear observer is presented to estimate the joint velocities of a biped robot, in which an H/sub /spl infin// approach and variable structure control (VSC) are embedded to attenuate the effect of external disturbances and parametric uncertainties. After the construction of the FNN nonlinear observer, a quadratic stabilization FNN controller is developed with a robust hybrid control scheme. As the employment of a quadratic stability approach, not only does it afford the possibility of trading off the design between FNN, H/sub /spl infin// optimal control, and VSC, but conservative estimation of the FNN reconstruction error bound is also avoided by considering the system matrix uncertainty separately. It is shown that all signals in the closed-loop control system are bounded.  相似文献   

17.
18.
In this paper, we investigate the problem of robust H/sub /spl infin// performance and stabilization for a class of uncertain fuzzy systems with Frobenius norm-bounded parameter uncertainties in all system matrices. Both continuous- and discrete-time uncertain fuzzy systems are considered under a unified treatment called bounded real lemma for fuzzy systems. Unlike the bounded real lemma in the linear theory of robust H/sub /spl infin// control where necessary and sufficient conditions were obtained, only sufficient condition based on Lyapunov method is shown. Furthermore, connection between robust H/sub /spl infin// problems involving uncertainty and standard uncertainty-free H/sub /spl infin// problems is established via matrix algebra. As for controller synthesis, a state feedback fuzzy control law is designed via relaxed linear matrix inequality (LMI) formulations.  相似文献   

19.
In this paper, we study the effect of a network in the feedback loop of a control system. We use a stochastic packet-loss model for the network and note that results for discrete-time linear systems with Markovian jumping parameters can be applied. We measure performance using an H/sub /spl infin// norm and compute this norm via a necessary and sufficient matrix inequality condition. We also derive necessary and sufficient linear matrix inequality (LMI) conditions for the synthesis of the H/sub /spl infin// optimal controller for a discrete-time jump system. Finally, we apply these results to study the effect of communication losses on vehicle control.  相似文献   

20.
A novel adaptive fuzzy controller with H/sub /spl infin// performance is proposed for a wide class of strict-feedback canonical nonlinear systems. The systems may possess a class of uncertainties referred to as unstructured uncertain functions, which are not linearly parameterized and have no prior knowledge of the bound. The Takagi-Sugeno-type fuzzy logic systems are used to approximate the uncertainties and a systematic design procedure is developed for synthesis of adaptive fuzzy control with H/sub /spl infin// performance, which combines the backstepping technique and generalized small gain approach. The method preserves the three advantages, those are, the semiglobal uniform ultimate bound of adaptive control in the presence of unstructured uncertainties can be guaranteed, the adaptive mechanism with only one learning parameter is obtained and the possible controller singularity problem in some of the existing adaptive control schemes with feedback linearization techniques can be removed. Performance and limitations of proposed method are discussed and illustrated with simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号