首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acoustic fiber sensor for measurement of ultrasonic waves, which used the approximate Raman-Nath diffraction effect where light diffraction waves were generated in an optical fiber by strain due to the ultrasonic waves, was proposed and examined. In order to characterize the acoustic fiber sensor as a basic study, measurements of low-frequency ultrasonic waves in water were examined using a step index fiber operating as a detection sensor. The results showed that characteristics of detected signals agreed with the theoretical prediction based on Fraunhofer diffraction. This indicates that our proposed fiber sensor can be used for the detection of low-frequency ultrasonic waves as well as the transmission of light diffraction signals.  相似文献   

2.
An intrinsic multiplexed laser interferometer is presented that allows for the simultaneous detection of acoustic waves by an array of fiber-optic sensors. The phase-modulated signals from each sensor are demodulated by use of an adaptive two-wave mixing setup. The light from each sensing fiber in the array is mixed with a reference beam in a single photorefractive crystal (PRC), and the output beams from the PRC are imaged onto separate photodetectors to create a multiplexed two-wave mixing (MTWM) system. The sensing fibers are embedded in graphite-epoxy composite panels, and detection of both acoustic emission and ultrasonic signals in these materials is demonstrated. The intrinsic MTWM system is an effective tool for the simultaneous demodulation of signals from a large fiber sensor array. Also, the adaptive nature of the MTWM setup obviates the need for active stabilization against ambient noise.  相似文献   

3.
Fiber optic ultrasonic sensor using Raman-Nath light diffraction   总被引:1,自引:0,他引:1  
A novel fiber optic ultrasonic sensor using the principle of Raman-Nath light diffraction has been developed. The sensor does not perturb the acoustic field and exhibits a wideband frequency response. In addition to the remote sensing of the field, it is suitable for measurements of both continuous and pulsed ultrasonic waves. The experimental results obtained with the sensor were compared to those measured using a calibrated PVDF needle hydrophone, showing excellent agreement. The sensor's frequency response in the range from 3 to 15 MHz, typical of that used in medical ultrasound imaging, was determined using the time delay spectrometry (TDS) technique. It appears that the fiber optic sensor provides a useful alternative to the widely used PVDF ultrasonic probes in specific applications where any perturbation between acoustic field and sensor is undesirable. Also, since the active element diameter of the sensor can be made comparable to the core diameter of an optical fiber, the fiber optic sensor minimizes the spatial averaging effects and offers significant improvement in comparison with the present state-of-the-art hydrophones which have a minimum diameter on the order of 300 μm  相似文献   

4.
Yu B  Kim DW  Deng J  Xiao H  Wang A 《Applied optics》2003,42(16):3241-3250
A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.  相似文献   

5.
光纤传感器因其灵敏度高,已逐渐应用于超声检测的研究中,但大多数光纤传感器的频带响应范围有限,约为几百k Hz,很难检测到更高频率的信号。所提出的光纤布拉格光栅(Fiber Bragg Grating,FBG)传感器的高频检测范围可以达到4 MHz左右,大大提高了其检测带宽范围。文中将传感器应用于304不锈钢板兰姆波的非线性检测,同时与传统超声换能器的检测结果做对比。实验结果表明,用脉冲波激励信号时,FBG传感器可以检测到钢板兰姆波的基频到五倍频信号,表明FBG在检测兰姆波非线性上是有很大潜力的。  相似文献   

6.
传统的兰姆波多采用压电陶瓷换能器激发和接收。建立了新的超声兰姆波无损检测系统,其基本思想是采用布拉格光纤传感器作为兰姆波的接收器。光纤光栅传感的基本原理是通过检测光栅反射的中心波长移动实现对外界参量如超声的测量。超声作用下光纤光栅的反射谱发生变化,对超声作用下光纤光栅的反射谱变化进行了数值分析,结果表明,超声对光栅反射谱的影响与超声波长与光栅长度的比值是高度相关的。只有当这个比值相当大时,反射谱的形状才不会变化而中心波长发生偏移,此时光纤传感器可用来探测兰姆波。这个结论为利用新的兰姆波无损检测系统在布拉格光栅长度的设计和兰姆波波长的选择方面提供了有用的工具。  相似文献   

7.
Sagnac-type fiber-optic array sensor for detection of bulk ultrasonic waves   总被引:4,自引:0,他引:4  
In this paper, we describe a fiber optic array sensor suitable for detection of bulk ultrasonic waves. This sensor is based on an intrinsic fiber optic Sagnac interferometer. The fiber array is formed by multiple folding of a continuous length of an optical fiber into flat coils. Depending on the orientation of the fiber array with respect to the ultrasonic wave, the proposed sensor can act as a conventional in-phase detector or as a narrowband detector. In the narrowband mode, the center frequency of detection can be tuned by adjusting the spacing of the fiber array elements to be equal to the ultrasonic wavelength of interest. This feature distinguishes this array sensor from conventional hydrophones in which a receiver is typically much smaller than the acoustical wavelength. It is shown that the array sensor provides an enhanced signal-to-noise ratio (SNR) compared with a single element detection scheme. Results are presented for detection of ultrasonic waves in water arising from both piezoelectric and laser ultrasonic sources. Potential areas of application of this sensor include process monitoring, smart structures, bio-medical ultrasound, and chemical sensing.  相似文献   

8.
This paper describes a fiber optic sensor suitable for noncontact detection of ultrasonic waves. This sensor is based on the fiber optic Sagnac interferometer, which has a path-matched configuration and does not require active stabilization. Quadrature phase bias between two interfering laser beams in the Sagnac loop is applied by controlling the birefringence using a fiber polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output according to the change of phase bias. Additional signal processing is not needed for the detection of ultrasonic waves using the Sagnac interferometer. Ultrasonic oscillations produced by conventional ultrasonic piezoelectric transducers were successfully detected, and the performance of this interferometer was investigated by a power spectrum analysis of the output signal. Based on the validation of the fiber optic Sagnac interferometer, noncontact detection of laser-generated surface waves was performed. The configured Sagnac interferometer is very effective for the detection of small displacement with high frequency, such as ultrasonic waves used in conventional nondestructive testing (NDT)  相似文献   

9.
基于兰姆波的结构工况检测技术在评估复合材料和金属结构的安全性和耐久性方面发挥着重要的作用。作为对传统的压电换能器(PZT)的一种很好的替代,光纤传感器在传感方面的应用正被广泛地挖掘出来,包括兰姆波检测。本文从理论上建立了超声兰姆波作用下光纤非本征法布里.玻罗(EFPI)传感器参数与其输出性能之间的关系。数值结果显示了传感器的性能与其相对于声源的方向角以及传感器的计量长度与超声波长的比值相关。所得出的结论对于EFPI传感器精确地探测兰姆波提供了理论依据。  相似文献   

10.
Response of fiber Bragg gratings to longitudinal ultrasonic waves   总被引:1,自引:0,他引:1  
In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for meeting specific requirements in terms of field intensity and frequencies.  相似文献   

11.
Wild  G. Hinckley  S. 《IEEE sensors journal》2008,8(7):1184-1193
This paper gives a review of acoustic and ultrasonic optical fiber sensors (OFSs). The review covers optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high-frequency signals, i.e., ultrasonic/ultrasound, and other signals such as acoustic emissions, and impact induced dynamic strain. Several optical fiber sensing methods are included, in an attempted to summarize the majority of optical fiber sensing methods used to date. The OFS include single fiber sensors and optical fiber devices, fiber-optic interferometers, and fiber Bragg gratings (FBGs). The single fiber and fiber device sensors include optical fiber couplers, microbend sensors, refraction-based sensors, and other extrinsic intensity sensors. The optical fiber interferometers include Michelson, Mach-Zehnder, Fabry-Perot, Sagnac interferometers, as well as polarization and model interference. The specific applications addressed in this review include optical fiber hydrophones, biomedical sensors, and sensors for nondestructive evaluation and structural health monitoring. Future directions are outlined and proposed for acousto-ultrasonic OFS.  相似文献   

12.
高锋  周虹  黄超 《振动与冲击》2022,(3):37-44+72
针对超声衍射时差法(TOFD)存在检测精度较差、区域检测可靠性不够和信号信噪比(signal-to-noise ratio, SNR)低等问题,提出了一种基于光纤皮秒激光器和高速旋转镜的相控阵激光超声裂纹检测方法。利用有限元方法模拟热弹机制,建立二维瞬态激光超声力-固耦合模型产生横波与纵波在缺陷处发生的衍射现象,分析了裂纹尖端不同奇异点、声波不同中心频率和相控阵激励源不同位置对声波衍射的影响,通过衍射信号的信噪比和位移幅值两个计算指标来分析变化规律,并进行了试验验证。结果表明:数值模拟与试验结果有较好的一致性,相控阵激光源较传统单束激光源对衍射信号幅值和信噪比有明显的增强作用,纵波衍射信号信噪比较理想;衍射信号幅值随裂纹尖端奇异点增加和声波中心频率减小而增大;信噪比随尖端奇异点增加而增大,随声波中心频率一定范围增加无明显变化,随激光源距离的增加呈现先增加后减小的趋势;缺陷定量分析时计算出的裂纹长度与实际裂纹的误差均不超过6.8%。  相似文献   

13.
A fiber optic ultrasonic system is described which monitors the cure of an epoxy resin. Ultrasound is generated using a high-power optical fiber to deliver high-energy pulses of light to the prepared surface of an aluminum mold that contains the curing epoxy resin. The generated ultrasound is detected using a local fiber optic ultrasound sensor embedded in the curing epoxy resin. The system was used to measure the ultrasonic signal velocity and ultrasonic attenuation throughout the cure of a neat epoxy resin at room temperature. Similar measurements also were performed using a piezoelectric transducer for ultrasound generation and an embedded fiber optic sensor for detection, which provided verification of the results using the complete fiber optic system. The complete fiber optic system demonstrated adequate sensitivity throughout the entire cure to measure the ultrasonic signal velocity and ultrasonic attenuation.  相似文献   

14.
介绍了一种在超声回弹波频谱分析基础上用光纤干涉仪来检测I形复合材料梁腹板/翼缘连接处分层的方法, 利用超声发射器在I形梁中产生应力波, 用表面粘贴的光纤干涉仪来接收应力波产生的输出信号, 对此信号进行频谱分析可找到I形梁的分层位置。理论分析和实验都表明了此方法探测复合材料梁腹板/翼缘连接处分层的可行性。   相似文献   

15.
介绍了一种在超声回弹波频谱分析基础上用光纤干涉仪来检测I形复合材料梁腹板/翼缘连接处分层的方法,利用超声发射器在I形梁中产生应力波,用表面粘贴的光纤干涉仪来接收应力波产生的输出信号,对此信号进行频谱分析可找到I形梁的分层位置。理论分析和实验都表明了此方法探测复合材料梁腹板/翼缘连接处分层的可行性。  相似文献   

16.
王光旭  李维树  谭新 《声学技术》2020,39(4):439-444
为研究基于超声的无损探伤方法在水利工程金属结构焊缝缺陷识别中的应用,利用常规超声检测技术、超声相控阵技术、衍射时差法(Time of Flight Diffraction, TOFD)超声检测技术对水利工程金属结构焊接试块缺陷进行识别,分析了各种缺陷在超声无损探伤技术中的特征显示。研究结果表明:常规超声检测技术、TOFD检测技术均能对各种缺陷实现信号显示,超声相控阵检测技术对气孔和横向裂纹的显示不够明显,但对其它缺陷的检出效果较为明显;常规超声检测技术对操作人员的要求较高,对缺陷的定性困难,精度不高;TOFD检测结果中气孔和横向裂纹的显示呈现出一种特殊的弧形,有一定高度的内部裂纹和未熔合的信号由上下尖端衍射波组成,根部未焊透上下尖端信号不够明显;相控阵检测结果直观,可以较精确地测量缺陷的埋藏深度、自身高度、长度等,但在扫查点状缺陷或者与超声声束平行的裂纹缺陷时,检出率极低。  相似文献   

17.
Embedded fiber-optic Fabry-Perot ultrasound sensor   总被引:2,自引:0,他引:2  
A fiber-optic ultrasound sensor is presented. The sensor consists of a continuous length of single-mode optical fiber with a built-in Fabry-Perot interferometer. The acoustic pressure produces changes in the index of refraction along the interferometer cavity through the strain-optic effect, thus modulating the reflected power of the light propagating in the fiber. The dielectric internal mirrors that form the interferometer are fabricated by joining a fiber coating with a TiO(2) film at one end to an uncoated fiber by electric arc fusion splicing. Experimental results have been obtained for sensors embedded in plastic and graphite composite materials, using ultrasound waves in the range from 100 kHz to 5 MHz. Values for the optical phase shift amplitude as large as 0.5 rad were obtained at an acoustic frequency of 200 kHz for a 1.1-cm-long interferometer embedded in plastic.  相似文献   

18.
The formation of secondary flows generated when intensive ultrasonic waves are propagated and absorbed in a gaseous medium is investigated experimentally. The effect of acoustic flows and sound absorption on acoutooptic interaction for diffraction of light on acoustic waves in a gas is investigated.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 55, No. 5, pp. 751–754, November, 1988.  相似文献   

19.
目的 钛基复合材料塑性差,断裂机制复杂,研发准确的缺陷在线检测技术对控制其服役过程的破坏风险和成形过程的零件质量具有重要意义。方法 提出了基于声发射的TiB/TC4复合材料塑性变形缺陷检测方法,首先进行3种不同应力状态TiB/TC4复合材料试样的单轴拉伸试验,以采集声发射信号,通过断口形貌分析其断裂机制,并使用谱聚类方法对声发射信号进行聚类分析,探寻声发射信号与断裂机制之间的关系。结果 通过谱聚类可将TiB/TC4复合材料塑性变形过程中的声发射信号分为低频连续和高频突发2类,其质心频率以600~650 kHz为分界。根据断口形貌分析将其分别对应为TC4基体晶粒内位错运动与晶界处增强相TiB颗粒断裂。TiB颗粒断裂的声发射信号占比随着应力三轴度的增大而提高。TC4基体晶粒内位错运动的声发射信号为低频、连续信号,而TiB断裂的声发射信号为高频、突发信号。结论 TiB/TC4复合材料塑性变形过程中的声发射信号源机制包括TC4基体晶粒内的位错运动与晶界处增强相TiB颗粒的断裂,通过谱聚类不仅能有效检测TiB/TC4复合材料塑性变形缺陷的产生,还能识别缺陷的形成机制。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号