共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
利用膨胀法结合金相-硬度法,在膨胀仪上测定了07MnNiMoDR钢的临界点Ac1和Ac3;测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,获得了连续冷却转变曲线(CCT曲线);研究了冷却速度对该钢组织及硬度的影响。结果表明,当冷却速度为0.5℃/s时,转变产物为铁素体和珠光体,当冷却速度为1~5℃/s时转变产物是铁素体、珠光体和贝氏体,当冷却速度为10~80℃/s时转变产物为贝氏体,当冷却速度大于150℃/s时,转变产物为马氏体。该钢种CCT曲线的测定可为生产实践和新工艺的制定提供一定的参考依据。 相似文献
4.
使用DIL805L型膨胀仪分析了曲轴钢的相变规律,得到了其奥氏体连续冷却转变曲线(CCT)。结果表明,试验钢的临界点为:Ac1=682 ℃,Ac3=765 ℃;当冷速为0.2~5 ℃/s时,转变产物为铁素体+珠光体;当冷速大于5 ℃/s时,转变产物为铁素体、珠光体、贝氏体与马氏体的混合组织;当冷速增大到15 ℃/s时,转变产物为贝氏体和马氏体组织;冷速越大冷却后马氏体含量越多,硬度逐渐增加。 相似文献
5.
6.
利用膨胀法结合金相-硬度法,在Gleeble-3800热模拟机上测定了27CrMo27S钢的临界点Ac1、Ac3以及Ms;测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,获得了连续冷却转变曲线(CCT曲线);研究了冷却速度对该钢组织及硬度的影响。结果表明在相当低的冷却速度范围内可获得贝氏体组织。当冷却速度小于1℃/s,转变产物为铁素体、珠光体和贝氏体(F+P+B),当冷却速度为1~6℃/s时转变产物是铁素体和贝氏体(F+B),当冷却速度为8~24℃/s时转变产物是贝氏体和马氏体(B+M),当冷却速度大于24℃/s时,转变产物为完全马氏体(M)。该钢种动态CCT曲线的测定可为生产实践和新工艺的制定提供一定的参考依据。 相似文献
7.
8.
27CrMo27S钢奥氏体连续冷却转变曲线 总被引:1,自引:0,他引:1
利用膨胀法结合金相-硬度法,在Gleeble-3800热模拟机上测定了27CrMo27S钢的临界点Ac1、Ac3以及Ms;测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,获得了连续冷却转变曲线(CCT曲线);研究了冷却速度对该钢组织及硬度的影响。结果表明在相当低的冷却速度范围内可获得贝氏体组织。当冷却速度小于1℃/s,转变产物为铁素体、珠光体和贝氏体(F+P+B),当冷却速度为1~6℃/s时转变产物是铁索体和贝氏体(F+B),当冷却速度为8-24℃/s时转变产物是贝氏体和马氏体(B+M),当冷却速度大于24℃/s时,转变产物为完全马氏体(M)。该钢种动态CCT曲线的测定可为生产实践和新工艺的制定提供一定的参考依据。 相似文献
9.
在DIL805L型膨胀仪上测定了55SiMnMo钎具钢在不同冷却速度下连续冷却时的膨胀曲线,结合金相-硬度法分析其相变规律及影响因素,获得了连续冷却转变曲线-CCT曲线。试验结果表明,55SiMnMo钢的临界点为:Ac1=751 ℃,Ac3=824 ℃;当冷却速度<0.15 ℃/s时,转变产物为铁素体、珠光体;随着冷速增加到0.15 ℃/s,转变产物开始出现少量贝氏体;当冷速>0.3 ℃/s时,有马氏体转变出现;珠光体、铁素体分别于冷速大于0.5 ℃/s、1 ℃/s时开始消失。 相似文献
10.
通过测定不同温度下等温转变的硬度曲线和不同冷却速度下连续冷却转变的膨胀曲线,结合金相组织观察,获得了含铌微合金钢的等温转变曲线和连续冷却转变曲线,研究了其等温转变和连续冷却条件下形变对贝氏体相变的影响规律.研究表明,在等温条件下,变形促进了贝氏体相变,贝氏体转变的鼻尖温度为500 ℃,Bs为600 ℃;在连续冷却条件下,随着冷却速度的增加,贝氏体转变开始温度下降,随着变形量的增加,贝氏体转变开始温度有所升高.从贝氏体转变开始温度来看,950 ℃变形时,对贝氏体相变有促进作用. 相似文献
11.
设计了一类 (0 38~ 0 4 4) %C Mn Si Cr成分的贝氏体钢汽车板簧材料 ,测定了常规力学性能 ,分析了组织特征。结果表明 ,该钢奥氏体化后空冷具有贝氏体 /马氏体复相组织 ;奥氏体化后空冷 ,经中低温回火后 ,其力学性能σb≥ 180 0MPa ,σ0 2 ≥ 16 0 0MPa ,δ5≥ 7%,ψ≥ 35 %,均显著超过 6 0Si2Mn钢的性能 ,屈强比 >0 8。钢中较高的Si含量使钢的第一类回火脆性温度升高 ,但随含碳量的增加 ,出现低温回火脆性的初始温度相应降低 相似文献
12.
对新型贝氏体中空钢在生产过程中出现的热轧棒料裂纹和断裂,热穿-热轧中空钢的内孔皱褶、表面重皮、内孔脱碳、组织粗大等缺陷的原因进行了分析,并提出防止缺陷产生的措施.结果表明:深入了解贝氏体钢的组织和性能特点,制定合理的棒料热轧工艺和中空钢热穿-热轧工艺,可以避免贝氏体钢棒料及其中空钢制造过程的缺陷. 相似文献
13.
控制冷却对新型贝氏体钢组织与性能的影响 总被引:1,自引:0,他引:1
研究了不同冷却速度对新型贝氏体钢力学性能及组织的影响。结果表明,奥氏体化后冷却速度控制在25~117C/min时,可以获得良好的力学性能,组织为贝氏体、铁素体和残余奥氏体,在贝氏体转变温度范围内缓冷,对改善贝氏体的韧性有利。 相似文献
14.
15.
16.
热处理对SiMn3型贝氏体高强钢组织和性能的影响 总被引:1,自引:0,他引:1
利用光学金相、透射电镜(TEM)、扫描电镜(SEM)观察,以及拉伸、硬度、冲击等试验方法,研究了热处理对复合微合金化低碳SiMn3型贝氏体高强钢的组织和力学性能的影响,并对其组织与性能关系进行了讨论.结果表明,该钢在空冷条件下,可获得均一的粒状贝氏体组织,并具有良好的强度与韧性(σ0.2=820 MPa、σb=1118 MPa、αKU=87 J/cm^2);空冷后经200~300 ℃回火,在贝氏体铁素体(BF)基体上析出了弥散细小的ε碳化物,屈服强度、韧性提高(σ0.2=824~835 MPa、σb=1019~1085 MPa、αKU=136~140 J/cm^2);在400 ℃以上回火,粒状贝氏体组织开始逐渐分解,BF基体上析出椭球状碳化物,并使强度、韧性降低;500~600 ℃回火,产生回火脆性(σ0.2=787~790 MPa、σb=967~1002 MPa、αKU=72~75 J/cm^2).空冷后低温回火使该钢获得最佳强韧性组合. 相似文献
17.
18.
低温回火态新型贝氏体钢的组织性能 总被引:2,自引:0,他引:2
研究了回火工艺对新型低合金贝氏体钢组织和性能的影响,了解了该材料的回火特性.结果表明:正火和低于400℃回火后的组织由贝氏体、铁素体和残余奥氏体组成,具有较好的力学性能、回火抗性、良好的焊接性和机械加工性;在高于500℃回火后出现回火脆性,由新型贝氏体组织转变为典型贝氏体组织,其原因与回火过程中残余奥氏体和贝氏体铁素体的分解、碳化物析出有关.通过研究回火后的组织转变、残余奥氏体热稳定性、机械稳定性的变化,探讨了无碳贝氏体韧化及脆化机理,提出了适于该钢的最佳回火工艺. 相似文献
19.