首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
一种基于负荷电流检测的电流互感器饱和识别辅助判据   总被引:2,自引:0,他引:2  
电流互感器饱和识别是电流差动保护亟待解决的难题之一.通过分析CT饱和电流特征,指出目前提出的许多饱和识别方法主要是根据饱和电流的某个或多个特征来进行饱和识别的.而负荷电流由于其电流值比较小,肯定不会引起CT饱和,但是当CT流经负荷电流时,有些CT饱和判别方法可能会失效.通过分析负荷电流的特征,从CT肯定不会饱和的角度考虑,提出了一种基于负荷电流检测的抗CT饱和方法,该方法能准确识别负荷电流,而且特征清晰、原理简单,也比较容易实现,可以作为目前提出的CT饱和判别方法的一个辅助判据.  相似文献   

4.
电流互感器饱和识别是电流差动保护亟待解决的难题之一。通过分析CT饱和电流特征,指出目前提出的许多饱和识别方法主要是根据饱和电流的某个或多个特征来进行饱和识别的。而负荷电流由于其电流值比较小,肯定不会引起CT饱和,但是当CT流经负荷电流时,有些CT饱和判别方法可能会失效。通过分析负荷电流的特征,从CT肯定不会饱和的角度考虑,提出了一种基于负荷电流检测的抗CT饱和方法,该方法能准确识别负荷电流,而且特征清晰、原理简单,也比较容易实现,可以作为目前提出的CT饱和判别方法的一个辅助判据。  相似文献   

5.
用于线路差动保护的电流互感器饱和判据   总被引:5,自引:4,他引:5  
高压、超高压输电线路由于短路容量大,在短线路等特殊情况下区外故障会引起电流互感器饱和,使电流差动保护误动作,采用提高差动门槛及比例制动系数的方法会降低差动保护的灵敏度,增加保护的动作时间。介绍了一种短数据窗与分段积分法相结合的电流互感器饱和识别方法,该方法使电流差动保护能在区外故障,电流互感器饱和时不误动作;在区内故障时可靠动作,快速切除故障。目前,该方法已成功应用于基于32位DSP的数字式光纤电流差动保护装置。  相似文献   

6.
基于电流极性比较的抗电流互感器饱和新方法   总被引:2,自引:1,他引:1  
提出了一种适用于输电线路差动保护抗电流互感器(TA)饱和的新方法———电流极性比较法。该方法通过将输电线路二次电流和差流相应的瞬时值相乘再积分的方法来比较两电流的极性关系,以此区分内部故障和外部故障时的TA饱和。EMTP仿真计算表明,在输电线路外部故障且TA发生饱和时,电流极性比较法能够可靠地闭锁差动保护;而在内部故障尤其是外部转内部故障且发生TA饱和时,也能使保护快速开放。  相似文献   

7.
基于数学形态学的电流互感器饱和识别判据   总被引:12,自引:13,他引:12  
利用数学形态学滤波器结合传统的时差法,实现了一种适用于差动保护的电流互感器饱和闭锁方案。由于数学形态学滤波器具有极佳的奇异点识别能力和噪声抑制能力,使得故障的发生和产生差流浪涌之间的时间差能通过多分辨率形态梯度进行实时、高精度的提取。因此,在TA饱和的情况下,通过合理设定该时问差的门槛值,外部故障和任何内部故障均可做到明显的区分。RTDS仿真结果表明,该方案可有效地防止因大穿越电流引起的电流互感器饱和而造成的差动保护误动,同时可保证对于内部故障的快速反应。  相似文献   

8.
9.
防止电力系统母线发生区外短路故障时,由于电流互感器(TA)饱和造成的电流瞬时值差动母线保护误动作,一直是母线保护中的一个重要课题。文中根据母线发生短路故障时,电流互感器饱和具有滞后的特点,提出了一种应用小波变换原理撮故障电压暂态特性,准确检测故障发生时刻,并根据时差法的基本原理来确定TA是否饱和的新方法。仿真结果证明了所提方法的有效性。  相似文献   

10.
当电流互感器在大短路电流故障情况下出现磁路饱和时,一次侧短路电流无法按照电流互感器变比正常转换为相应的二次侧电流值,这对基于电流有效值继电保护的动作可能会带来影响.在不考虑非周期分量情况下,通过分析铁芯的饱和特性、研究电流互感器饱和时二次侧电流的波形,可以得出二次侧电流有效值的计算公式,再通过与电流互感器未饱和时二次侧...  相似文献   

11.
为解决电流互感器(TA)饱和导致的线路电流差动保护误动问题,提出一种基于Hausdorff距离算法的电流互感器饱和识别策略。首先,分析了电流互感器的饱和特性,指出现有饱和识别方法的问题。然后,基于电流互感器正常电流波形和饱和电流波形的特征,引入了在几何建模、图像识别等领域广泛应用的Hausdorff距离算法,提出了TA饱和识别判据,该判据能在线路区外故障发生互感器饱和时可靠闭锁电流差动保护,在区内故障时可靠不动作。理论分析和基于PSCAD的仿真结果表明,所提TA饱和识别策略能有效识别不同程度的电流互感器饱和,识别快速且准确性较高,具有一定的工程借鉴意义。  相似文献   

12.
P类电流互感器饱和原因分析及对策   总被引:4,自引:0,他引:4  
微机保护被广泛使用后,电流互感器的二次负荷由阻感性变为电阻性,且故障切除时间缩短,使P类电流互感器残留剩磁大大增加,常引起下次故障时,电流差动保护区外误动和距离Ⅰ段延时动作.文中通过实例和理论分析,说明了剩磁和一次电流非周期分量对电流传变的不同影响,建议220 kV及以下电压等级线路保护使用PR类电流互感器,以消除剩磁对保护的影响,同时能够保证距离Ⅰ段范围内故障的快速切除.对于PR类电流互感器,在考核互感器饱和对保护的影响时,只需考虑非周期分量引起的暂态饱和,因此依据"故障发生5 ms后电流互感器出现暂态饱和"对保护进行考核是合理的.  相似文献   

13.
14.
电流互感器饱和影响测距精度的一种解决方法   总被引:3,自引:5,他引:3  
电流互感器(TA)饱和会给基于工频电气量的输电线路故障测距精度带来很大的误差。文中利用MATLAB程序,设计了一个前向BP网络,利用BP网络来对TA饱和电流进行矫正补偿,然后再进行故障测距。EMTP仿真的结果表明,对TA饱和电流进行补偿矫正后,明显地改进了故障测距的精度。  相似文献   

15.
利用小波原理检测电流互感器饱和的新方法   总被引:18,自引:5,他引:13  
防止电力系统母线发生区外短路故障时,由于电流互感器(TA)饱和造成的电流瞬时值差动母线保护误动作,一直是母线保护中的一个重要课题。文中根据母线发生短路故障时,电流互感器饱和具有滞后的特点,提出了一种应用小波变换原理提取故障电压暂态特性,准确检测故障发生时刻,并根据时差法的基本原理来确定TA是否饱和的新方法。仿真结果证明了所提方法的有效性。  相似文献   

16.
基于小波变换的电流互感器饱和实时检测新判据   总被引:23,自引:8,他引:15  
目前微机母线保护最常用的方法是电流瞬时值差动保护。这种方法受电流互感器(TA)饱和的影响而容易误动作。一种解决的方法是当TA饱和时闭锁母差保护。但该方法当故障由区外转为区内时保护会拒动。文中利用小波变换能检测信号奇异性的原理,提出了一种实时检测TA饱和区和线形区的一种新方法。在故障开始后对TA二次电流实时进行多尺度小波变换,由于TA二次电流波形在故障发生时刻、进入饱和时刻和出饱和时刻都有奇异性,分别对应小波模极大值,可根据小波模极大值的不同特征判断对应时刻的是进饱和点还是出饱和点,从而实现TA饱和区闭锁、线形区开放的母差保护。  相似文献   

17.
基于差动电流与制动电流比值的抗电流互感器饱和新方法   总被引:1,自引:1,他引:1  
根据差动电流与制动电流的比值在内部故障和外部故障电流互感器(TA)饱和时的不同变化特征,提出了一种区分内部故障和外部故障TA饱和的新方法--比率制动系数法.同时,为解决内部故障TA也发生饱和时差动保护的开放问题,在比率制动系数判据的基础上又增加了差动电流极性判据.EMTP仿真计算表明,该方法不仅能明确区分内部故障和外部故障TA饱和,而且在内部故障TA也发生饱和以及在转换性故障时,差动保护也能够快速开放.比率制动系数法特征清晰,原理简单,具有良好的应用前景.  相似文献   

18.
一种特高压3/2接线纵差保护抗电流互感器饱和措施   总被引:3,自引:0,他引:3  
特高压长线路3/2接线侧母线附近区外故障时2个分电流互感器都有可能饱和,使引入2个电流互感器和电流的相量差动保护遇到了较大困难.提出了一种实用抗电流互感器饱和措施,采用低电压启动判据筛选出可能引起电流互感器饱和的3/2接线侧母线附近的区内和区外故障,然后根据短数据窗电流不饱和的特点,采用适当的定值区分3/2接线侧母线附近区内故障差流和区外故障分布电容电流,从而通过闭锁防止区外故障因饱和误动.该方法已在实验样机中得到应用,并成功地通过保护动模试验.  相似文献   

19.
利用数字信号处理中的自相关函数理论,提出全波波形相关系数法与半波波形相关系数法相结合的电流互感(CT)器饱和检测算法。仿真结果表明:该算法抗干扰能力强,稳定性高,识别准确;能检测各种运行工况下的CT饱和,不受非周期分量、二次谐波含量以及二次电流过零点的影响。  相似文献   

20.
苏玉林 《供用电》1999,16(6):37-39
随着电网容量不断增大,为满足电网安全供电的要求,一些大城市内的配网系统由经消弧线圈接地的运行方式逐步改为经电阻接地。北京市四环路以内已有十几座110kV变电站的10kV中性点改为经10Ω电阻接地的方式,且已投入运行。为满足发生单相接地故障跳闸的要求,须在变电站的10kV出线及所带的10kV用户配电室加装零序电流保护设备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号