首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A possible role for a protein kinase, PKN, a fatty acid-activated serine/threonine kinase with a catalytic domain homologous to the protein kinase C family and a direct target for Rho, was investigated in the pathology of Alzheimer's disease (AD) using a sensitive immunocytochemistry on postmortem human brain tissues and a kinase assay for human tau protein. The present study provides evidences by light, electron, and confocal laser microscopy that in control human brains, PKN is enriched in neurons, where the kinase is concentrated in a subset of endoplasmic reticulum (ER) and ER-derived vesicles localized to the apical compartment of juxtanuclear cytoplasm, as well as late endosomes, multivesicular bodies, Golgi bodies, secretary vesicles, and nuclei. In AD-affected neurons, PKN was redistributed to the cortical cytoplasm and neurites and was closely associated with neurofibrillary tangles (NFTs) and their major constituent, abnormally modified tau. PKN was also found in degenerative neurites within senile plaques. In addition, we report that human tau protein is directly phosphorylated by PKN both in vitro and in vivo. Thus, our results suggest a specific role for PKN in NFT formation and neurodegeneration in AD damaged neurons.  相似文献   

2.
3.
Dynamin guanosine triphosphatases support the scission of clathrin-coated vesicles from the plasmalemma during endocytosis. By fluorescence microscopy of cultured rat hepatocytes, a green fluorescent protein-dynamin II fusion protein localized with clathrin-coated vesicles at the Golgi complex. A cell-free assay was utilized to demonstrate the role of dynamin in vesicle formation at the trans-Golgi. Addition of peptide-specific anti-dynamin antibodies to the assay mixture inhibited both constitutive exocytic and clathrin-coated vesicle formation. Immunodepletion of dynamin proteins also inhibited vesicle formation, and budding efficiency was restored upon readdition of purified dynamin. These data suggest that dynamin participates in the formation of distinct transport vesicles from the trans-Golgi network.  相似文献   

4.
One approach to the prediction of the carbon content of austenite, remaining after the precipitation of bainitic ferrite, is based on the assumption that bainitic ferrite during growth inherits the carbon content of the parent austenite. An alternative approach is based on the assumption that bainitic ferrite grows with a low carbon content and there is no major difference between Widmanstätten ferrite and bainitic ferrite. The two approaches are now compared using information from alloyed steels with considerable amounts of Si, where the formation of cementite is retarded. The former approach does not account for the effect of Mn and fails severely at low alloy contents. The latter approach seems more promising but is not without difficulties. In particular, in order to explain the effects of Cr and Mo, it seems necessary to introduce a kinetic effect, presumably caused by solute drag.  相似文献   

5.
6.
The endoplasmic reticulum (ER) and the closely connected, single dictyosomal Golgi apparatus of Tetrahymena pyriformis cells showed random distribution in the cytoplasm. Ribosomes were evident, and coated vesicles pinched off from the ER were seen. The membranes of the endoplasmic reticulum generally formed a tube-like structure, although after histamine treatment multiple, folded and circular structures were observed. The number of coated vesicles detaching from the endoplasmic reticulum increased as a result of histamine treatment.  相似文献   

7.
The function of the Golgi apparatus is to modify proteins and lipids synthesized in the ER and sort them to their final destination. The steady-state size and function of the Golgi apparatus is maintained through the recycling of some components back to the ER. Several lines of evidence indicate that the spatial segregation between the ER and the Golgi apparatus as well as trafficking between these two compartments require both microtubules and motors. We have cloned and characterized a new Xenopus kinesin like protein, Xklp3, a subunit of the heterotrimeric Kinesin II. By immunofluorescence it is found in the Golgi region. A more detailed analysis by EM shows that it is associated with a subset of membranes that contain the KDEL receptor and are localized between the ER and Golgi apparatus. An association of Xklp3 with the recycling compartment is further supported by a biochemical analysis and the behavior of Xklp3 in BFA-treated cells. The function of Xklp3 was analyzed by transfecting cells with a dominant-negative form lacking the motor domain. In these cells, the normal delivery of newly synthesized proteins to the Golgi apparatus is blocked. Taken together, these results indicate that Xklp3 is involved in the transport of tubular-vesicular elements between the ER and the Golgi apparatus.  相似文献   

8.
Currentlytheincidenceandlethalityofthrombusillnessareveryhigh ,anditseriouslythreatenspublichealth .Thrombolysisisoneoftherelativelyeffectivemethodstotreatthedis ease .Single chainurokinase typeplasminogenactivator (scu PA 3 2k )oflowmolecularweight(3 2kD)wasdi…  相似文献   

9.
We are studying the intracellular trafficking of the multispanning membrane protein Ste6p, the a-factor transporter in Saccharomyces cerevisiae and a member of the ATP-binding cassette superfamily of proteins. In the present study, we have used Ste6p as model for studying the process of endoplasmic reticulum (ER) quality control, about which relatively little is known in yeast. We have identified three mutant forms of Ste6p that are aberrantly ER retained, as determined by immunofluorescence and subcellular fractionation. By pulse-chase metabolic labeling, we demonstrate that these mutants define two distinct classes. The single member of Class I, Ste6-166p, is highly unstable. We show that its degradation involves the ubiquitin-proteasome system, as indicated by its in vivo stabilization in certain ubiquitin-proteasome mutants or when cells are treated with the proteasome inhibitor drug MG132. The two Class II mutant proteins, Ste6-13p and Ste6-90p, are hyperstable relative to wild-type Ste6p and accumulate in the ER membrane. This represents the first report of a single protein in yeast for which distinct mutant forms can be channeled to different outcomes by the ER quality control system. We propose that these two classes of ER-retained Ste6p mutants may define distinct checkpoint steps in a linear pathway of ER quality control in yeast. In addition, a screen for high-copy suppressors of the mating defect of one of the ER-retained ste6 mutants has identified a proteasome subunit, Hrd2p/p97, previously implicated in the regulated degradation of wild-type hydroxymethylglutaryl-CoA reductase in the ER membrane.  相似文献   

10.
The finding that ADP-ribosylation factor (ARF) can activate phospholipase D has led to debate as to whether ARF recruits coat proteins through direct binding or indirectly by catalytically increasing phosphatidic acid production. Here we test critical aspects of these hypotheses. We find that Golgi membrane phosphatidic acid levels do not rise-in fact they decline-during cell-free budding reactions. We confirm that the level of membrane-bound ARF can be substantially reduced without compromising coat assembly [Ktistakis, N. T., Brown, H. A., Waters, M. G., Sternweis, P. C. & Roth, M. G. (1996) J. Cell Biol. 134, 295-306], but find that under all conditions, ARF is present on the Golgi membrane in molar excess over bound coatomer. These results do not support the possibility that the activation of coat assembly by ARF is purely catalytic, and they are consistent with ARF forming direct interactions with coatomer. We suggest that ARF, like many other G proteins, is a multifunctional protein with roles in trafficking and phospholipid signaling.  相似文献   

11.
We have investigated the role of the ADP- ribosylation induced by brefeldin A (BFA) in the mechanisms controlling the architecture of the Golgi complex. BFA causes the rapid disassembly of this organelle into a network of tubules, prevents the association of coatomer and other proteins to Golgi membranes, and stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kD (GAPDH and BARS-50; De Matteis, M.A., M. DiGirolamo, A. Colanzi, M. Pallas, G. Di Tullio, L.J. McDonald, J. Moss, G. Santini, S. Bannykh, D. Corda, and A. Luini. 1994. Proc. Natl. Acad. Sci. USA. 91:1114-1118; Di Girolamo, M., M.G. Silletta, M.A. De Matteis, A. Braca, A. Colanzi, D. Pawlak, M.M. Rasenick, A. Luini, and D. Corda. 1995. Proc. Natl. Acad. Sci. USA. 92:7065-7069). To study the role of ADP-ribosylation, this reaction was inhibited by depletion of NAD+ (the ADP-ribose donor) or by using selective pharmacological blockers in permeabilized cells. In NAD+-depleted cells and in the presence of dialized cytosol, BFA detached coat proteins from Golgi membranes with normal potency but failed to alter the organelle's structure. Readdition of NAD+ triggered Golgi disassembly by BFA. This effect of NAD+ was mimicked by the use of pre-ADP- ribosylated cytosol. The further addition of extracts enriched in native BARS-50 abolished the ability of ADP-ribosylated cytosol to support the effect of BFA. Pharmacological blockers of the BFA-dependent ADP-ribosylation (Weigert, R., A. Colanzi, A. Mironov, R. Buccione, C. Cericola, M.G. Sciulli, G. Santini, S. Flati, A. Fusella, J. Donaldson, M. DiGirolamo, D. Corda, M.A. De Matteis, and A. Luini. 1997. J. Biol. Chem. 272:14200-14207) prevented Golgi disassembly by BFA in permeabilized cells. These inhibitors became inactive in the presence of pre-ADP-ribosylated cytosol, and their activity was rescued by supplementing the cytosol with a native BARS-50-enriched fraction. These results indicate that ADP-ribosylation plays a role in the Golgi disassembling activity of BFA, and suggest that the ADP-ribosylated substrates are components of the machinery controlling the structure of the Golgi apparatus.  相似文献   

12.
Using a novel in vitro assay which allows us to distinguish vesicle budding from subsequent targeting and fusion steps, we provide the first biological evidence that beta-COP, a component of non-clathrin-coated vesicles believed to mediate intraGolgi transport, is essential for transport of protein from the ER to the cis-Golgi compartment. Incubation in the presence of beta-COP specific antibodies and F(ab) fragments prevents the exit of vesicular stomatitis virus glycoprotein (VSV-G) from the ER. These results demonstrate that beta-COP is required for the assembly of coat complexes mediating vesicle budding. Fractionation of rat liver cytosol revealed that a major biologically active form of beta-COP was found in a high molecular pool (> 1,000 kD) distinct from coatomer and which promoted efficient vesicle budding from the ER. Surprisingly, rab1B could be quantitatively coprecipitated with this beta-COP containing complex and was also essential for function. We suggest that beta-COP functions in an early step during vesicle formation and that rab1B may be recruited as a component of a precoat complex which participates in the export of protein from the ER via vesicular carriers.  相似文献   

13.
Oligosaccharides on invertase restricted to the endoplasmic reticulum (ER) in alg3,sec18 yeast at 37 degrees C were found to be 20% wild type Man8GlcNAc and 80% Man1 alpha-->2Man1 alpha-->2Man1 alpha-->3(Man1 alpha-->6)Man1 beta-->4GlcNAc2 (Verostek, M.F., Atkinson, P.H., and Trimble, R. B. (1991) J. Biol. Chem. 266, 5547-5551). These results suggested that alg3 was slightly leaky, but did not address whether the oligosaccharide-lipid Man9GlcNAc2 and Man5GlcNAc2 precursors were glucosylated in alg3 yeast. Therefore, an alg3,sec18,gls1 strain was constructed to delete the GLS1-encoded glucosidase I responsible for trimming the terminal alpha 1,2-linked glucose from newly transferred Glc3ManxGlcNAc2 oligosaccharides. Invertase activity was overexpressed 5-10-fold on transforming this strain with a multicopy plasmid (pRB58) carrying the SUC2 gene, and preparative amounts of the ER form of external invertase, derepressed and accumulated at 37 degrees C, were purified. The N-linked glycans were released by sequential treatment with endo-beta-N-acetylglucosaminidase H (endo H) and peptide-N4-N-acetyl-beta-glucosaminyl asparagine amidase. Oligosaccharide pools were sized separately on Bio-Gel P-4, which showed that endo H released about 17% of the carbohydrate as Glc3Man8GlcNAc, while peptide-N4-N-acetyl-beta-glucosaminyl asparagine amidase released the remainder as Hex8GlcNAc2 and Man5GlcNAc2 in a 1:4 ratio. Glycan structures were assigned by 500-MHz two-dimensional DQF-COSY 1H NMR spectroscopy, which revealed that the endo H-resistant Hex8GlcNAc2 pool contained Glc3Man5GlcNAc2 and Man8GlcNAc2 in a 6:4 ratio, the latter a different isomer from that formed by the ER alpha 1,2-mannosidase (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666). Recovery of Glc3Man8GlcNAc and not the ER form of Man8GlcNAc provided an internal control indicating the absence of glucosidase I, which was confirmed by incubation of [3H]Glc3[14C]Man9GlcNAc with solubilized membranes from either alg3,sec18,gls1 or alg3,sec18,GLS1 strains. Chromatographic analysis of the products showed that [3H]Glc was removed only in the presence of the GLS1 gene product. Thus, the vast majority of the N-linked glycosylation in the ER of alg3 yeast (> 75%) occurs by transfer of Man5GlcNAc2 without prior addition of the 3 glucoses normally found on the lipid-linked precursor.  相似文献   

14.
Anp1p, Van1p and Mnn9p constitute a family of membrane proteins required for proper Golgi function in Saccharomyces cerevisiae. We demonstrate that these proteins colocalize within the cis Golgi, and that they are physically associated in two distinct complexes, both of which contain Mnn9p. Furthermore, we identify two new proteins in the Anp1p-Mnn9p-containing complex which have homology to known glycosyltransferases. Both protein complexes have alpha-1, 6-mannosyltransferase activity, forming a series of poly-mannose structures. These reaction products also contain some alpha-1, 2-linked mannose residues. Our data suggest that these two multi-protein complexes are responsible for the synthesis and initial branching of the long alpha-1,6-linked backbone of the hypermannose structure attached to many yeast glycoproteins.  相似文献   

15.
Integral membrane proteins (IMPs) contain localization signals necessary for targeting to their resident subcellular compartments. To define signals that mediate localization to the Golgi complex, we have analyzed a resident IMP of the Saccharomyces cerevisiae Golgi complex, guanosine diphosphatase (GDPase). GDPase, which is necessary for Golgi-specific glycosylation reactions, is a type II IMP with a short amino-terminal cytoplasmic domain, a single transmembrane domain (TMD), and a large catalytic lumenal domain. Regions specifying Golgi localization were identified by analyzing recombinant proteins either lacking GDPase domains or containing corresponding domains from type II vacuolar IMPs. Neither deletion nor substitution of the GDPase cytoplasmic domain perturbed Golgi localization. Exchanging the GDPase TMD with vacuolar protein TMDs only marginally affected Golgi localization. Replacement of the lumenal domain resulted in mislocalization of the chimeric protein from the Golgi to the vacuole, but a similar substitution leaving 34 amino acids of the GDPase lumenal domain intact was properly localized. These results identify a major Golgi localization determinant in the membrane-adjacent lumenal region (stem) of GDPase. Although necessary, the stem domain is not sufficient to mediate localization; in addition, a membrane-anchoring domain and either the cytoplasmic or full-length lumenal domain must be present to maintain Golgi residence. The importance of lumenal domain sequences in GDPase Golgi localization and the requirement for multiple hydrophilic protein domains support a model for Golgi localization invoking protein-protein interactions rather than interactions between the TMD and the lipid bilayer.  相似文献   

16.
The potent thrombin inhibitor hirudin variant 1, originally isolated from the leech Hirudo medicinalis, was expressed in Saccharomyces cerevisiae under the control of a truncated glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter fragment. Fusion of the yeast acid phosphatase (PHO5) signal sequence to the hirudin gene led to quantitative secretion of recombinant desulfato-hirudin variant 1 (r-hirudin) into the extracellular medium in a growth-dependent manner. In comparison to the genuine molecule, r-hirudin lacks the sulfate group at the Tyr in position 63. Besides the full-length protein of 65 amino acids (hir65), chemical analysis revealed the presence mainly of two derivatives lacking the last amino acid Gln (hir64) or the penultimate Leu (hir63) in addition. When expressing r-hirudin in mutant strains defective in all but one of the three major known carboxypeptidases, it turned out that the vacuolar carboxypeptidase yscY as well as the alpha-factor precursor-processing carboxypeptidase, ysc alpha, participate in the C-terminal degradation of r-hirudin. Direct involvement of yscY and ysc alpha was confirmed by sequential disruption of their structural genes PRC1 and KEX1, respectively. Disruption of PRA1, coding for the yscY-processing proteinase yscA, also abolished yscY-mediated C-terminal r-hirudin degradation, but clearly reduced the overall expression yield. Since ysc alpha is described to be highly specific for basic amino acids which are not present at the C-terminus of r-hirudin, a series of r-hirudin mutants with changes in the C-terminal amino acids were constructed and analysed for ysc alpha-mediated and yscY-mediated degradation. Chromatographic analysis of the expression products confirmed the preference of ysc alpha for basic amino acids, although Tyr, Leu and Gln were also hydrolysed. It could further be concluded that ysc alpha might also be responsible for the C-terminal degradation of recombinant atrial natriuretic factor and epidermal growth factor expressed in yeast.  相似文献   

17.
Because of limitations of the univariate frailty model in analysis of multivariate survival data, a bivariate frailty model is introduced for the analysis of bivariate survival data. This provides tremendous flexibility especially in allowing negative associations between subjects within the same cluster. The approach involves incorporating into the model two possibly correlated frailties for each cluster. The bivariate lognormal distribution is used as the frailty distribution. The model is then generalized to multivariate survival data with two distinguished groups and also to alternating process data. A modified EM algorithm is developed with no requirement of specification of the baseline hazards. The estimators are generalized maximum likelihood estimators with subject-specific interpretation. The model is applied to a mental health study on evaluation of health policy effects for inpatient psychiatric care.  相似文献   

18.
Dynamins are 100-kilodalton guanosine triphosphatases that participate in the formation of nascent vesicles during endocytosis. Here, we have tested if novel dynamin-like proteins are expressed in mammalian cells to support vesicle trafficking processes at cytoplasmic sites distinct from the plasma membrane. Immunological and molecular biological methods were used to isolate a cDNA clone encoding an 80-kilodalton novel dynamin-like protein, DLP1, that shares up to 42% homology with other dynamin-related proteins. DLP1 is expressed in all tissues examined and contains two alternatively spliced regions that are differentially expressed in a tissue-specific manner. DLP1 is enriched in subcellular membrane fractions of cytoplasmic vesicles and endoplasmic reticulum. Morphological studies of DLP1 in cultured cells using either a specific antibody or an expressed green fluorescent protein (GFP)- DLP1 fusion protein revealed that DLP1 associates with punctate cytoplasmic vesicles that do not colocalize with conventional dynamin, clathrin, or endocytic ligands. Remarkably, DLP1-positive structures coalign with microtubules and, most strikingly, with endoplasmic reticulum tubules as verified by double labeling with antibodies to calnexin and Rab1 as well as by immunoelectron microscopy. These observations provide the first evidence that a novel dynamin-like protein is expressed in mammalian cells where it associates with a secretory, rather than endocytic membrane compartment.  相似文献   

19.
20.
Transport of cargo proteins from the endoplasmic reticulum (ER) to the cis-Golgi network is mediated by protein-coated vesicles. The coat, called COPII coat, consists of proteins that are recruited from the cytosol and interact with integral membrane proteins of the ER. In yeast, both cytosolic proteins (Sec13/31, Sec23/24, and Sar1) and ER-associated proteins (Sec12 and others) have been purified and characterized and it has been possible to demonstrate transport vesicle formation in vitro. Arabidopsis thaliana homologs of Sar1 and Sec12 have recently been identified, but little is known about the properties of the proteins or their subcellular distribution. Here we demonstrate that AtSAR1, a 22-kD protein that binds GTP, and AtSEC12, a 43-kD GTP-exchange protein, are both associated with the ER. However, about one-half of the cellular AtSAR1 is present in the cytosol. When AtSAR1 is overexpressed in transgenic plants, the additional protein is also cytosolic. When tissue-culture cells are cold-shocked (12 h at 8 degrees C), AtSAR1 levels appeared to decline and a larger proportion of the total protein was found in the cytosol. Given the known function of AtSAR1 in yeast, we propose that the amount of ER-associated AtSAR1 is an indication of the intensity of the secretory process. Thus, we expect that such a cold shock will adversely affect ER-to-Golgi transport of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号