首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive tight exponential upper bounds on the decoding error probability of block codes which are operating over fully interleaved Rician fading channels, coherently detected and maximum-likelihood decoded. It is assumed that the fading samples are statistically independent and that perfect estimates of these samples are provided to the decoder. These upper bounds on the bit and block error probabilities are based on certain variations of the Gallager bounds. These bounds do not require integration in their final version and they are reasonably tight in a certain portion of the rate region exceeding the cutoff rate of the channel. By inserting interconnections between these bounds, we show that they are generalized versions of some reported bounds for the binary-input additive white Gaussian noise channel.  相似文献   

2.
This paper presents a tight upper bound on the bit error performance of coded modulation schemes in Rayleigh fading channels. Upper and lower bounds on the pairwise error probability are first derived. The upper bound is then expressed in a product form to be used with the transfer function bounding technique. This upper bound has the same simplicity as the union-Chernoff bound while providing closer results to the exact expression. Examples for the case of four-state and eight-state TCM 8PSK schemes are also given to illustrate the tightness and the application of this upper bound  相似文献   

3.
Biglieri  E. Caire  G. Taricco  G. 《Electronics letters》1995,31(19):1625-1627
The computation of the pairwise error probability (PEP) for coded digital communications in the presence of fading is often performed by using the Chernoff upper bound, which is simple to evaluate but rather loose. Exact evaluation of the PEP is possible in principle by computing the residues of a complex function, but this may be complicated in practice. In the Letter the authors derive two approximations to the PEP. The first one, based on saddle-point integration, is simple to compute and generally tighter than the Chernoff bound. The second one, based on Gauss-Chebyshev quadrature rules, is both easy to use and computationally stable, and approximates the true value of PEP within any degree of accuracy  相似文献   

4.
Some issues with Forney's upper and lower bounds (1972) for the symbol error probability in systems with memory (e.g., intersymbol interference channels) have been pointed out in the literature. We expound on these issues. For the upper bound, we show that, although the most commonly cited proofs are not logically consistent, the bound is true for more general conditions. The reasoning leading to the lower bound is shown to be flawed and, in general,to lead to invalid lower bounds. We suggest a lower bound based on Mazo's bound (1975) as an alternative  相似文献   

5.
Strict upper and lower bounds of exponential-type are derived for the generalized (mth order) Marcum Q-function which enable simple evaluation of a tight upper bound on the average bit-error probability performance of a wide class of noncoherent and differentially coherent communication systems operating over generalized fading channels. For the case of frequency selective fading with arbitrary statistics per independent fading path, the resulting upper hound on performance is expressed in the form of a product of moment generating functions of the instantaneous power random variables that characterize these paths  相似文献   

6.
Weng  J.F. Leung  S.H. 《Electronics letters》1997,33(20):1675-1676
A general formula for the bit error probability of M-ary DPSK transmission with equal gain combining diversity over frequency non-selective m-distributed Nakagami fading channels is derived. Simulations have shown that the analysis is efficient and accurate  相似文献   

7.
Sun  Y. Baricz  A.. Zhao  M. Xu  X. Zhou  S. 《Electronics letters》2009,45(23):1177-1179
The bit error probability (BEP) of DQPSK with Gray coding over an AWGN channel can be computed simply, although it is hard to integrate and derive the average BEP for fading channels. Presented are novel approximations of the average BEP of DQPSK with Gray coding over fading channels. Numerical results show that the novel formulations are quite accurate.  相似文献   

8.
We study generalized selection combining (GSC) schemes in independent Nakagami fading channels, where N diversity branches with the largest instantaneous signal-to-noise ratios (SNRs) are selected from the total of L (N⩽L) branches and then coherently or noncoherently combined. We propose two different techniques to derive the moment generating function (MGF) expressions for the GSC output SNR in generalized Nakagami fading channels, where there are distinct and noninteger fading severity parameters, as well as different average SNRs in different diversity branches. For arbitrary fading severity parameter mk, k=1, ···L, the MGF expression is given in a summation of N-dimensional definite integrals with the limits independent of SNR or channel parameters, and therefore can be evaluated very efficiently with numerical methods. Furthermore, for integer mk closed-form MGF expressions are derived. Specializations of our results to Rayleigh channels and independent identically distributed (i.i.d.) Nakagami channels are presented, which are either new or equivalent to previously published results. Using the newly derived MGF expression, we provide a unified error probability analysis for many coherent and noncoherent modulation/detection schemes  相似文献   

9.
This work provides a new exact expression for the pairwise error probability under perfect channel state information. Using this expression, the average union upper bounds for (1,7/5,7/5) and (1,5/7,5/7) turbo coding schemes are presented based on transfer function approach assuming fully interleaved Rayleigh fading channels. Derivation for the pairwise error probability leads to a compact approximation which overlaps with the exact expression. This new approximation is computationally more efficient than the existing ones, and leads to a much quicker general ion of union bounds for performance analysis.  相似文献   

10.
In this letter, we present new closed-form formulas for the exact average symbol-error rate (SER) of binary and M-ary signals over Nakagami-m fading channels with arbitrary fading index m. Using the well-known moment generating function-based analysis approach, we express the average SER in terms of the higher transcendental functions such as the Gauss hypergeometric function, Appell hypergeometric function, or Lauricella function. The results are generally applicable to arbitrary real-valued m. Furthermore, with the aid of reduction formulas of hypergeometric functions, we show previously published results for Rayleigh fading (m=1) as special cases of our expressions.  相似文献   

11.
Consideration is given to optimal detection of linearly modulated signals subject to multiplicative Rayleigh-distributed distortion and additive white Gaussian noise. For coherent detection, regenerated amplitude and phase references are employed at the receiver to compensate for amplitude and phase deviations from the correct values. A system model is formulated under the assumption of perfect symbol timing and in the absence of intersymbol interference, producing a final additive noise term, applied just before the detection, which contains the effects of the original additive and multiplicative distortions and of the errors in the phase and amplitude references. By determining the probability density function of this final noise term for arbitrary types of linear modulation, it is possible to perform exact calculations of error probabilities  相似文献   

12.
We derive here improved upper bounds on the decoding error probability of block codes which are transmitted over fully interleaved Rician fading channels, coherently detected and maximum-likelihood (ML) decoded. We assume that the fading coefficients during each symbol are statistically independent (due to a perfect channel interleaver), and that perfect estimates of these fading coefficients are provided to the receiver. The improved upper bounds on the block and bit error probabilities are derived for fully interleaved fading channels with various orders of space diversity, and are found by generalizing some previously introduced upper bounds for the binary-input additive white Gaussian nose (AWGN) channel. The advantage of these bounds over the ubiquitous union bound is demonstrated for some ensembles of turbo codes and low-density parity-check (LDPC) codes, and it is especially pronounced in a portion of the rate region exceeding the cutoff rate. Our generalization of the Duman and Salehi bound (Duman and Salehi 1998, Duman 1998) which is based on certain variations of Gallager's (1965) bounding technique, is demonstrated to be the tightest reported upper bound. We therefore apply it to calculate numerically upper bounds on the thresholds of some ensembles of turbo-like codes, referring to the optimal ML decoding. For certain ensembles of uniformly interleaved turbo codes, the upper bounds derived here also indicate good match with computer simulation results of efficient iterative decoding algorithms  相似文献   

13.
This paper studies the average error probability of bit-interleaved coded modulation with uniform interleaving in fully-interleaved fading channels. At large signal-to-noise ratio, the dominant pairwise error events are mapped into symbols with Hamming weight larger than one, causing a flattening of the error probability. Closed-form expressions for the error probability with general modulations are provided. For interleavers of practical length, the flattening is noticeable only at very low values of the error probability.  相似文献   

14.
This correspondence proposes an explicit construction of codes achieving capacity for arbitrary discrete memoryless channels. The proposed code is obtained by concatenating variable inner codes and an algebraic geometry code. Further, we clarify that the proposed code achieves the error exponent obtained by Forney for concatenated codes  相似文献   

15.
Space time block coding is a modulation scheme recently discovered for the transmit an- tenna diversity to combat the effects of wireless fading channels. Using the equivalent Single-Input Single-Output (SISO) model, this paper presents closed-form expressions for the exact Symbol Error Rate (SER) and Bit Error Rate (BER) of Orthogonal Space-Time Block Codes (OSTBCs) with M-ary Phase-Shift Keying (MPSK) and M-ary Quadrature Amplitude Modulation (MQAM) over flat un- correlated Nakagami-m and Ricean fading channels.  相似文献   

16.
Full duplex (FD) technique has evolved as a viable solution to address the spectrum scarce issue. It has gained research interest for its potential to double the wireless link capacity and enhance spectral efficiency (SE). In this paper, the end-to-end performance of an amplify-and-forward full duplex relay(FDR) in asymmetric Rayleigh–Rician fading channels is explored, unlike the other works that assume symmetric fading conditions in both the links. The asymmetric or mixed fading channels properly model the realistic communication scenarios like satellite/terrestrial wireless communication systems. In this work, we consider that the source-relay link experiences Rayleigh fading and the relay-destination link experiences Rician fading. The novel exact and lower bound closed form analytical expressions for outage probability (OP) and bit error rate (BER) for the considered FD system are derived. Moreover, the effect of severity of fading and the amount of residual self-interference (RSI) on the performance of FDR are also studied. In addition, MC simulations are carried out to validate the results. It is observed that the performance metrics, OP and BER, are highly dependent on the severity of fading and the amount of RSI. Furthermore, it is found that typically at the SNR of 10 dB, an improvement of approximately 27.6% in OP is obtained. Also, our work offers appreciable SNR gain, for example, for a BER of 10−2, an SNR improvement of around 11 dB is achieved. These findings have been compared with the mixed Rayleigh–Rician fading channel conditions considering only half duplex(HD) mode. These parameter metrics are helpful in analyzing the performance of FD in various communication scenarios such as LoS/NLoS conditions and hence pave the way for more realistic FDR.  相似文献   

17.
We present two upper bounds and one lower bound on the pairwise error probability (PEP) of unitary space-time modulation (USTM) over the Rayleigh fading channel. The two new upper bounds are the tightest so far, and the new lower bound is the tightest at low signal-to-noise ratio. Some implications for USTM constellation design are also pointed out.  相似文献   

18.
Bit-error bounds for trellis-coded MPSK in mixed fading channels   总被引:1,自引:0,他引:1  
Bit-error probability (BEP) bounds of trellis-coded MPSK systems over two classes of mixed fading channels are studied. These two classes of channels have been proposed as candidate models for mobile satellite communications. The first class consists of slow and frequency-nonselective fading channels whose output field strengths follow a probability law characterized by a convex combination of Rician and Rayleigh/lognormal distributions. For the other class of fading channels, the received signal amplitude has a convex combination of Rician and Rician/lognormal distributions. We analyze performance bounds for trellis codes that belong to the class of either geometrically uniform codes (GUCs) or quasi-regular codes (QRCs). Receivers with either ideal channel state information (CSI) or no CSI at all are considered. We examine asymptotic behaviors of these codes and identify key design parameters. Numerical results are provided to illustrate and compare the BEP performances of various codes and to validate the usefulness of the asymptotic analysis  相似文献   

19.
Closed form expressions for the average probability of packet error (PPE) are presented for no diversity, maximum ratio combining (MRC), selection combining (SC) and switch and stay combining (SSC) diversity schemes. The average PPE for the no diversity case is obtained in two alternative expressions assuming arbitrarily correlated Nakagami and Rician fading channels. For the MRC case, L diversity branches are considered and the channel samples are assumed to follow Nakagami distribution and to be arbitrarily correlated in both time and space. For the SC diversity scheme with L diversity branches, two bounds on the average PPE are derived for both slow and fast fading channels. The average PPE in this case is obtained in an infinite integral form for Nakagami channels while it is reduced to a closed form expression for the Rayleigh case. The average PPE is also derived in the case of SSC diversity with dual branches for both slow and fast Rayleigh fading channels. The new formulas are applicable for all modulation schemes where the conditional probability of error has an exponential dependence on the signal‐to‐noise ratio. The average PPE is then used to obtain a modified expression for the throughput for network protocols. In general, the diversity gain exhibits a little diminishing effect as the number of diversity branches increases. In addition, the system is found to be more sensitive to the space correlation than to the time correlation. The effects of different system parameters and diversity schemes are studied and discussed. Specific figures about the system performance are also provided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
New exact expressions for the symbol-error rate and bit-error rate of coherent 3-ary and 4-ary orthogonal and transorthogonal signaling in slowly fading Rayleigh channels are derived. New exact error probability expressions for coherent 6-ary and 8-ary biorthogonal signaling in slow Rayleigh fading are also presented. The use of these exact expressions as accurate approximations for the error rates of M-ary orthogonal, biorthogonal, and transorthogonal signaling with arbitrary M is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号