首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正确认识地震作用下边坡的破坏模式及动力响应特征可以为边坡抗震设计提供理论指导。为了探讨边坡土体含水率的变化对边坡破坏模式及动力响应的影响,针对该问题展了室内振动台模型试验,分析了不同含水率边坡失稳破坏的物理过程,以及在地震荷载作用下边坡动力响应规律。试验结果表明土体含水率对边坡破坏模式有较大影响,含水率6.8%和10%的砂土边坡分别表现为震裂–溃滑型和震裂–溃散型滑坡破坏形式,含水率18.1%和24.6%的黏土边坡分别表现为震裂–溃散性和震裂–蠕滑型滑坡破坏形式;在参数考虑的范围内含水率较大的边坡比含水率较小的边坡更稳定;在水平动力载荷作用下,边坡表面的土体位移变化规律能够反应出边坡失稳破坏特征;对于该文讨论的砂土和黏土边坡而言,含水率大的边坡加速度放大效应弱于含水率小的边坡;从土体阻尼角度解释了含水率变化对边坡失稳影响的机理。  相似文献   

2.
地震引起的滑坡是我国山区最为常见的地质灾害,为了深入理解地震作用下边坡的破坏过程及动力响应特性,对震裂–溃滑型破坏模式的边坡进行了室内振动台模型试验,深入分析该类型边坡失稳破坏的物理过程,以及在地震荷载作用下边坡动力响应规律。通过分析相关边坡的现场资料,设计制作相似模型并进行多工况的模型试验。试验结果表明在地震荷载作用下,边坡加速度放大系数沿高程的变化规律受加载波的类型影响较大。在同样条件下,卧龙波诱导的边坡加速度放大系数最大,EL Centro波次之,正弦波最小。边坡加速度放大系数与输入波加速度峰值关系受输入波类型、边坡土体位置等影响较大。当激励载荷频率较低时(如小于6 Hz),整个边坡的加速度放大效应不明显;当激励载荷频率较高时(如大于10 Hz),边坡底部区域加速度放大效应不明显,但在边坡中上部位置边坡加速度放大效应显著。  相似文献   

3.
黄土丘陵区易发生震陷型边坡失稳。通过动力离心模型试验和有限差分非线性动力分析方法研究地震时黄土边坡的动力响应及变形机制,探究了地震作用下概化黄土边坡的加速度及位移响应,提出了基于动单剪试验条件下黄土震陷系数经验公式及黄土场地震陷量估算方法,并应用于黄土边坡震陷变形计算。结果表明:黄土边坡对地震荷载具有放大效应,加速度放大系数沿高程呈非线性增大,且坡面动力放大效应大于坡体内部;边坡的震陷量与土层厚度关系密切,土层震陷系数随高程呈对数式增加;地震作用下黄土边坡的破坏形式是水平滑移变形与竖向震陷变形双向耦合的结果,震陷变形表现显著,边坡向临空面滑动,坡顶张拉裂隙和坡面错位裂隙大量发育,震陷沉降不均导致坡面形成错位阶梯。  相似文献   

4.
抗滑桩加固边坡地震响应离心模型试验   总被引:9,自引:0,他引:9       下载免费PDF全文
为研究抗滑桩加固边坡的地震响应和桩土相互作用规律,利用土工离心机及专用振动台进行了砂土边坡的动力离心模型试验。在50g离心加速度条件下,输入El Centro地震波,记录了边坡不同位置的加速度时程并作频谱分析,采集了桩前动土压力和抗滑桩应变等。结果表明:边坡的地震动力响应自下而上逐渐放大;抗滑桩对周围土体响应有一定阻滞作用;桩前动土压力随着地震输入而迅速增大至峰值,此后保持稳定直至地震结束;抗滑桩各截面弯矩的变化规律与动土压力类似,弯矩最大值出现在抗滑桩下部。  相似文献   

5.
 堆积体边坡在我国西南地区广泛分布,为深入研究其地震响应规律,设计完成了1∶50比尺的概化边坡离心振动台模型试验,分析4级不同强度地震连续作用下,风干堆积体边坡的加速度响应、边坡变形及其失稳模式。试验结果表明,堆积体边坡水平向PGA放大系数表现出了典型的高程放大效应与趋表放大效应。沿堆积体边坡高程方向,输入地震波频谱特性发生了明显改变,各测点加速度傅里叶谱的卓越频率随PGA增大而降低。考虑竖直向加速度放大效应的影响后,发现合放大系数与水平向夹角随高程有减小的趋势,反映了坡面处发生的波场分裂与波型转换现象。随地震波幅值的增大,水平向与竖直向PGA放大系数均先减小后增大。试验过程中观察发现在地震波加速度峰值达到0.216 g时堆积体边坡开始失稳,坡顶沉降明显,失稳模式以浅层崩滑为主。  相似文献   

6.
 以国道G213左侧一处包含河谷地形的高陡边坡为原型,采用新型离散元计算方法--基于连续模型的离散元方法(CDEM),对高烈度地震作用下高陡边坡上的堆积体滑坡由变形累计到破坏滑动的全过程进行模拟,并结合振动台试验结果,对该高陡边坡上堆积体的地震滑坡响应进行研究。研究结果表明,在地震力和重力作用下,堆积体顶部先出现应力集中,造成堆积体沿基岩–堆积体结构面后缘产生变形,进而造成该处出现拉伸、剪切破坏点,之后随着地震动的持续,基岩–堆积体结构面上的剪切破坏点逐渐向堆积体中前部的锁固段扩展,同时伴随着堆积体表面拉伸破坏点的增加,最终造成锁固段发生渐进性破坏,堆积体从剪出口滑出形成滑坡。滑塌发生的时间与地震动峰值加速度到达的时间同步或稍微有所滞后。在高陡边坡地形中,以输入地震波为基准,不论是坡面还是坡体内,不同位置的峰值加速度沿坡高均有所放大,表现为竖向峰值加速度的放大效应>水平峰值加速度的放大效应,坡面峰值加速度的放大效应>坡体内峰值加速度的放大效应。在河谷地形中,以输入波为基准,不论是河床还是河岸两侧的斜坡,不同位置的峰值加速度沿高程均具有不同程度的放大;河谷对加速度放大效应的影响具有一定范围,且在该范围内水平加速度的放大效应>竖向加速度的放大效应,与坡面处加速度的放大效应刚好相反;加速度的放大效应具有一定的方向性,且该方向性与河岸两侧斜坡的坡度有关;加速度放大效应在河谷底部的分布具有不均匀性,距离河岸越近,加速度放大效应越强烈。  相似文献   

7.
为研究悬臂抗滑桩加固堆积型滑坡的地震响应、抗滑桩桩后动土压力和桩身弯矩分布规律,设计完成50倍重力加速度条件下的悬臂抗滑桩加固堆积型滑坡离心振动台模型试验。试验过程中,采用汶川地震清溪台站反演的基岩波作为基底输入,不断增大输入地震波的幅值,通过监测滑坡不同位置加速度响应、抗滑桩桩后动土压力和桩身应变研究不同强度地震动作用下悬臂抗滑桩加固堆积型滑坡的抗震性能。试验结果表明:滑坡土体中加速度响应随高程增加而增大,趋于坡顶时放大效果最大,具有明显的高程放大效应,而滑坡坡面处呈现浅表放大效应;抗滑桩加固使滑体土体响应受到一定限制;桩后动土压力随着地震动的输入迅速增大至峰值,此后保持稳定形成残余动土压力作用于抗滑桩上;抗滑桩各截面动弯矩呈现出凸形分布规律,弯矩最大值出现在基岩面附近处;桩后动土压力和桩身动弯矩均随着地震动强度的增大而增大。所得到的成果为边坡悬臂抗滑桩抗震设计提供良好的基础。  相似文献   

8.
为研究西北地区特殊的黄土–泥岩二元结构边坡地震动响应机制,以天水地区典型边坡和滑坡为原型,采用黄土–泥岩组合的概念模型,设计并完成比例1∶40的离心机振动台试验。在满足相似律的条件下,通过输入不同振幅的水平向和垂向地震波,系统地研究模型边坡的地震动力响应特性。以输入加速度峰值0.1 g为例,对这2种边坡模型的动力响应及破坏特征差异进行分析,结果表明:2种边坡关键点位的动力响应水平向大于垂向,呈非线性,并表现为趋表效应、高程效应和岩性效应;一般黄土边坡的破坏形式表现为:坡肩形成拉张裂隙,逐渐扩张,坡肩产生向临空面方向的位移,坡体中上部的黄土覆盖层隆起,部分土体振松滑落堆积在坡脚;黄土滑坡的破坏形式表现为:滑坡后壁形成拉张裂隙,逐渐扩张,滑坡后壁发生崩落,滑坡顶部堆积体略有下挫,形成凹槽,坡脚发生轻微鼓胀。  相似文献   

9.
为研究西北地区特殊的黄土–泥岩二元结构边坡地震动响应机制,以天水地区典型边坡和滑坡为原型,采用黄土–泥岩组合的概念模型,设计并完成比例1∶40的离心机振动台试验。在满足相似律的条件下,通过输入不同振幅的水平向和垂向地震波,系统地研究模型边坡的地震动力响应特性。以输入加速度峰值0.1 g为例,对这2种边坡模型的动力响应及破坏特征差异进行分析,结果表明:2种边坡关键点位的动力响应水平向大于垂向,呈非线性,并表现为趋表效应、高程效应和岩性效应;一般黄土边坡的破坏形式表现为:坡肩形成拉张裂隙,逐渐扩张,坡肩产生向临空面方向的位移,坡体中上部的黄土覆盖层隆起,部分土体振松滑落堆积在坡脚;黄土滑坡的破坏形式表现为:滑坡后壁形成拉张裂隙,逐渐扩张,滑坡后壁发生崩落,滑坡顶部堆积体略有下挫,形成凹槽,坡脚发生轻微鼓胀。  相似文献   

10.
挡土墙后黏性土的地震主动土压力分析   总被引:2,自引:1,他引:1  
在Mononobe-Okabe平面滑裂面假设的基础上,考虑地震加速度的放大效应,运用拟动力学的分析方法,得到考虑时间和相位变化的刚性挡土墙后黏性土地震主动土压力系数、地震主动土压力合力和主动土压力分布强度的理论公式。在此基础上,利用优化算法得到地震卓越周期中的最不利工况,分析水平和竖向地震加速度系数、内摩擦角、墙面摩擦角、挡土墙倾角和地震放大系数对最不利工况下滑动面倾角、主动土压力系数、临界深度、合力作用点和土压力分布的影响。研究表明:地震主动土压力分布为非线性;地震加速度的存在大大增加黏性土的主动土压力;挡土墙倾角和地震放大效应对临界深度、合力作用点和土压力分布都有着明显影响。  相似文献   

11.
2013年岷漳Ms6.6级地震诱发的永光村泥流状滑坡表明,单一因素下稳定的黄土边坡在地震和降雨耦合作用下会诱发严重的岩土灾害。因此,基于防御与减轻地震灾害的现实需求,开展了地震和降雨耦合作用下黄土边坡振动台模型试验,通过加载卓越频率差异较大的原始波和压缩波,研究了地震和降雨耦合作用下黄土边坡的动力响应特征。试验结果表明:边坡动力作用过程,土体微结构不断损伤演化,土体动力参数——共振频率与阻尼比随动载强度增大不断调整变化,从而引起边坡不同部位加速度响应特征(频谱、幅度)的变化。PGA放大效应取决于边坡自振频率与荷载主频接近程度,当二者愈接近,放大效应越明显,反之放大效应越弱甚至响应衰减(放大系数小于1)。根据边坡模型宏观变形以及相关物理量的变化特征,地震和降雨耦合作用下的边坡失稳破坏过程可划分为:弹性动变形阶段、残余变形快速增加阶段、液化滑移阶段,不同阶段边坡动力响应各具特点。  相似文献   

12.
为了研究黄土边坡在地震和降雨耦合作用下的动力响应特征、变形演化过程以及失稳破坏机制,开展天然状态、降雨100 mm黄土边坡2种模型试验,对比分析降雨前后两类边坡模型的宏观变形、加速度、孔压、土压力等相关物理量的变化特征。结果表明:降雨后黄土边坡模型自振频率降低,阻尼比增大,地震动放大效应增强;强震作用下,坡顶区域土体震陷、液化,后续地震动作用下液化土体还会出现顺坡向滑移;根据边坡模型宏观变形、孔压及土压力变化,其失稳破坏过程可划分为:弹性动变形阶段、残余变形快速增加阶段、液化滑移阶段、蠕滑阶段4个阶段,不同阶段土体宏观变形、孔压、土压力各自有其特点。  相似文献   

13.
运用大型振动台试验,通过加载EI地震波,研究地震作用下"人"字型和平形微型桩支挡结构的动力学响应并对比了二者的抗震承载能力,目的是通过对比试验研究提出抗震承载能力和抗变形能力更强的结构,为边坡工程和微型桩支挡结构抗震设计提供借鉴。研究结果表明,在EI地震波作用下:微型桩支挡结构山侧土压力滑面以上呈现"K"型分布,滑面附近土压力最大;两类微型桩河侧土压力分布特征不同;微型桩在双向耦合地震作用下土压力大于单向地震作用下的土压力;滑面处"人"字型微型桩支挡结构承担的滑坡推力为平形微型桩的2~5倍,平形微型桩桩顶横梁较"人"字型微型桩向前错动2.2 cm,"人"字型微型桩较平行微型桩支挡结构抗震承载能力和抗变形能力更强;微型桩支挡结构地震动土压力峰值存在响应滞后效应,滑动面附近土压力在整个地震时间段波动幅度较大,地震动峰值土压力响应滞后效应更明显;坡体内加速度沿桩身呈现放大特征,地震作用越强加速度放大效应越显著,边坡坡面附近加速度放大效应最强。  相似文献   

14.
邵帅  邵生俊  李宁  张彬 《岩土工程学报》2021,(2):245-253,I0004
为研究黄土边坡地震动响应机制,以兰州地区典型边坡为原型,设计并完成了几何比尺1∶20的原状黄土边坡动力离心模型试验。系统地研究了黄土边坡的地震动力响应特性、黄土边坡的稳定性和震陷变形规律。表明黄土边坡的加速度放大效应随坡高呈非线性增大变化,且在坡体顶部到达最大;边坡坡面的动力放大效应大于坡体内的动力放大效应;边坡断面内坡肩下动力放大效应大于坡中下动力放大效应。强震作用下黄土边坡破坏形式表现为坡顶有明显的震陷下沉,坡顶、坡肩及坡面出现大量的震动裂隙。由于坡肩及破面震陷变形,以及坡体内震动裂缝发展,边坡中下部坡面出现挤出、隆起变形,并向临空面方向产生移动。坡体内震动裂缝发展形成了潜在滑移面,为边坡产生整体滑移提供了条件。  相似文献   

15.
 通过振动台模型试验对穿越活动地裂缝的地铁隧道的动力响应进行了研究,研究内容主要包括地铁隧道的加速度反应,土压力及应变的变化规律。分析结果表明,穿越活动地裂缝的地铁隧道在地震荷载作用中,活动地裂缝场地产生不均匀沉降,上盘沉降大于下盘区,预设地裂缝部位沉降值最大,不均匀沉降导致次生裂缝及沉降陡坎产生,地铁隧道上方场地土体产生细小裂缝;地铁隧道与活动地裂缝的加速度时程曲线均与地震动荷载加速度时程具有一致性,地铁隧道各部位加速度时程保持一致,说明在地震中地铁运动保持整体性,上盘场地的加速度峰值较大,表明在活动地裂缝中上盘区对地震动力有一定的放大效应;活动地裂缝场地中土压力呈现出动土压力曲线变化,地震加载结束后隧道结构侧向的土压力受力状态及大小均产生变化,隧道结构顶部的土压力有较大增加;应变曲线表明在扩大断面的马蹄形隧道结构中拱腰部位的应变增值最大,拱顶部位次之,底板的应变增值相比最小。以上成果对于合理认识跨越地裂缝的地铁隧道的地震响应特征具有重要意义,可为地铁隧道实际工程设计和施工的抗震设防提供宝贵的基础资料。  相似文献   

16.
汶川Ms8.0特大地震在甘肃黄土灾区局部场地的震害和地震动具有明显的放大效应。通过在该区布设的地形调查流动强震动观测台阵,获取了同一山体不同高程的余震加速度记录,结果呈现出山顶记录到的峰值加速度大于山腰,而山腰记录也略大于山脚的规律。为了进一步分析黄土地区地震峰值加速度的放大机理,运用地脉动观测手段调查了其局部场地条件,得到了山体不同高程的卓越频率。并以典型黄土塬为背景,运用二维等价线性时程响应动分析法对不同覆盖层厚度和不同坡度的黄土塬进行了地震荷载作用下的动力响应分析,分析了不同条件下的山顶和山腰的地震峰值加速度放大特征。结果表明,地震峰值加速度放大效应和黄土覆盖层厚度及黄土边坡坡度有直接的关系。数值计算结果与实际震害观测吻合较好,证实了黄土覆盖层厚度和坡度是峰值加速度放大的重要因素。  相似文献   

17.
悬臂挡墙是一种适用于地震地区的支挡结构,应用广泛,墙后填料一般具有一定的坡度角,其抗震设计仍面临如何确定地震土压力大小及其作用点、变形及破坏模式等诸多问题。另外,微型桩具有较好的抗震性能,其在浅层滑坡治理加固等领域得到了广泛的应用,针对其在横向动荷载作用下的受力特征、荷载与变形累积等方面的研究还相对较少。为此开展了悬臂挡墙支护的微型桩加固边坡地震响应特性的离心振动台模型试验研究,同时对典型工况进行了数值模拟。主要从3个方面对微型桩–悬臂挡墙支护边坡的地震响应特征进行了分析讨论:(1)边坡的地震加速度响应及其坡顶沉降变形;(2)微型桩地震响应与弯矩分布;(3)悬臂挡墙动土压力大小及作用点、弯矩大小及惯性弯矩的影响、地震位移变形模式、残余弯矩累积发展趋势。对输入输出加速度的传递函数分析表明,边坡土体对输入地震波中接近其自振频率的频率分量具有显著的放大效应;微型桩结构上部设置刚性连接梁能明显改善其受力性能,微型桩的柔韧性与延性等使其在地震荷载作用下可以耗散更多能量;悬臂挡墙上的惯性弯矩超过动弯矩的22%以上,不容忽视,当挡土墙后部填土坡度角较大且同时坡顶上部有荷载时,得到的动土压力系数ΔKa...  相似文献   

18.
三峡库区蓄水后诱发的高频度微小地震对边坡稳定性产生了重大影响。采用振动台模型试验和UDEC离散元数值计算方法,深入地探究了库区典型顺倾层状岩质边坡在高频次微小地震下的累积损伤和稳定性。研究表明:①地震持续作用下,边坡自振频率、阻尼比、损伤度和损伤速率依次降低、增大、累积变大和不断提升,各测点PGA响应表现为"高程效应"和"趋表效应",且PGA放大系数均呈降低趋势;②高、低动荷载振幅阶段边坡岩体非线性累积损伤模型可分别用指数函数和三次函数描述,其演化曲线分别呈初期轻微降低、中期线性递增、后期平缓微增的"S"型特征和急速增长的"陡升"型特征;③边坡累积损伤–失稳破坏呈现为起伏体爬坡–啃断–磨平、次级节理(层面)起裂–扩展–贯通、坡体沿复合破坏面发生整体滑移、失稳破坏后岩体以破碎–大型–巨型块状堆积于坡脚,且含起伏体边坡整体稳定性更优;④动荷载振幅、动荷载频率、坡高、坡角增大而层面厚度减小时,边坡临界失稳微震作用次数减小、累积永久位移增大、稳定性系数减小,且层面出露边坡更易发生失稳破坏。  相似文献   

19.
反复微震作用下顺层及反倾岩质边坡的动力稳定性分析   总被引:1,自引:0,他引:1  
水库蓄水后诱发的高频次微小地震在一定程度上会对区域地质体的稳定性产生重要影响。本文采用振动台试验、UDEC数值分析方法,对顺层、反倾两类典型岩质边坡在反复微小地震作用下的动力稳定性进行了深入研究。结果表明:两类边坡的加速度响应均表现出"高程效应"和"趋表效应",且随地震作用次数的增加,坡体损伤(表现为层面与次级节理的起裂、扩展、贯通)不断累积,造成两类边坡的动力响应均呈现减弱的趋势;在反复微震作用下,边坡自振频率减低和阻尼比增大是其动力特性变化的基本规律;边坡累积永久位移随着地震作用次数的增加而增加,而稳定性系数则呈现递减趋势;在反复微震作用下,顺层坡的后缘竖向拉裂缝逐渐向下扩展并与下卧层面连通,边坡主要发生沿层面的整体滑移失稳模式;反倾坡首先在坡肩及坡面出现块体崩落,随后上部岩层逐层剥落,最终形成圆弧形破坏面,边坡以坡肩处发生落石、中上部岩层发生崩塌为主要破坏特征。  相似文献   

20.
准确理解地震作用下堆积体边坡的动力响应及失稳特征,可以为边坡抗震设计及稳定性分析方法提供依据。为了探讨不同类型地震荷载作用下堆积体边坡的失稳特征及动力响应,该文开展室内振动台模型试验。分析不同加载波形条件下边坡失稳特征以及加速度放大系数随相对高程、无量纲加速度幅值和频率参数的变化规律。探讨堆积体边坡的典型失稳特征和相关的物理机制。结果表明,正弦波作用下堆积体边坡加速度放大系数沿相对高程增长而变化较小;汶川清平波和El-Centro波作用下边坡加速度放大系数沿边坡相对高程呈较明显增大趋势。无量纲参数对放大系数影响较弱。当振动荷载达到边坡破坏的临界荷载时,边坡在短时间内即出现失稳破坏,破坏具有突发性,失稳模式具有典型的震裂-溃散型滑坡模式。在地震动力荷载作用下边坡位移变形可分为两个典型阶段:微变形阶段和急速上升大变形阶段。就该文3种波而言,在相同波峰幅值条件下,相同持续时间内正弦波所携带的总能量最大,最易使边坡失稳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号