首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
硼中子俘获治疗(boron neutron capture therapy, BNCT)是二元靶向放射治疗方法,中子并不直接提供肿瘤治疗剂量,而是利用肿瘤靶向10B携带剂将10B(n, α)7Li俘获反应产生的剂量沉积于肿瘤细胞。因此了解血液、肿瘤组织和正常组织中10B携带剂的生物分布对于BNCT临床治疗是必不可少的。目前国际上BNCT临床主要使用4-硼-L-苯丙氨酸(4-borono-L-phenylalanine, BPA)为硼携带剂。本文简要总结了BPA的结构、理化特性、细胞摄取机制以及人体生物分布等数据,目的是支持和促进基于BPA的BNCT临床试验准备。  相似文献   

2.
叙述了国际上硼中子俘获疗法治疗肿瘤(BNCT)的历史、现状和今后的设想,重点描述了BNCT的基本原理和中子源装置,可供从事BNCT工作的同志们参考。  相似文献   

3.
《同位素》2020,(1)
硼中子俘获疗法(boron neutron capture therapy, BNCT)是一种可以选择性杀伤肿瘤细胞的放射疗法,硼(~(10)B)化合物携带剂注入人体后,会选择性富集于肿瘤细胞,与中子发生俘获反应,释放α粒子和~7Li粒子杀死肿瘤。BNCT以靶向治疗、低毒高效等优势成为了放射治疗领域的新型手段。从上世纪开始,硼中子俘获疗法已在世界各国崭露头角并逐渐发展起来,已经能够成功治疗脑胶质瘤、黑色素瘤等多种疾病。目前,BNCT面临着如何研发创新更高效的含硼药物,建立更为精确的硼剂量测量体系,以及医用中子源如何摆脱核反应堆等问题。本文对BNCT的原理、优势、进展以及所面临的问题进行简要综述与探究。  相似文献   

4.
王淼  童永彭 《同位素》2020,33(1):14-26
硼中子俘获疗法(boron neutron capture therapy,BNCT)是一种可以选择性杀伤肿瘤细胞的放射疗法,硼(10 B)化合物携带剂注入人体后,会选择性富集于肿瘤细胞,与中子发生俘获反应,释放α粒子和7Li粒子杀死肿瘤。BNCT以靶向治疗、低毒高效等优势成为了放射治疗领域的新型手段。从上世纪开始,硼中子俘获疗法已在世界各国崭露头角并逐渐发展起来,已经能够成功治疗脑胶质瘤、黑色素瘤等多种疾病。目前,BNCT面临着如何研发创新更高效的含硼药物,建立更为精确的硼剂量测量体系,以及医用中子源如何摆脱核反应堆等问题。本文对BNCT的原理、优势、进展以及所面临的问题进行简要综述与探究。  相似文献   

5.
硼中子俘获治疗   总被引:3,自引:0,他引:3  
罗全勇  朱瑞森 《同位素》2004,17(3):174-177,182
硼中子俘获治疗(BNCT)的基本原理是应用热中子照射靶向聚集在肿瘤部位的^10B,^10B俘获中子后产生α粒子和^7Li,α粒子和^7Li杀灭肿瘤细胞而起到治疗作用。BNCT在临床上主要用于神经胶质瘤和黑色素瘤的治疗。文章主要对有关BNCT的基础及临床研究进行了简要综述,内容包括BNCT的基本原理、^10B在肿瘤细胞的聚集、中子源、实验研究现状以及BNCT面临的挑战与问题等。  相似文献   

6.
为得出硼中子俘获治疗(BNCT)中不同能量中子在含肿瘤Snyder修正头部模型内的深度-剂量曲线,籍以进一步理解BNCT原理,优化BNCT治疗中子源的能谱分布,本文利用MCNP模拟计算0.025 3 eV、1 eV、1 keV、10 keV、100 keV、1 MeV和混合能量的超热中子源在含肿瘤Snyder修正头部模型内的硼剂量、热中子剂量、超热和快中子剂量以及次级光子剂量组分的深度-剂量分布,并在此基础上得到总的相对生物学剂量的深度-剂量分布,以判断不同能量组中子源在BNCT中的优劣。结果表明,热中子头皮浅表处硼剂量高于肿瘤区硼剂量;快中子源硼剂量小,但其剂量组分中超热和快中子剂量过大;超热中子具有一定的穿透性,在脑深部肿瘤区形成了较高的硼剂量和总的相对生物学剂量。说明超热中子具有良好的BNCT治疗效果,热中子和快中子不适宜用于脑部BNCT治疗。  相似文献   

7.
于涛  钱金栋  谢金森 《核动力工程》2012,33(3):17-20,37
根据硼中子俘获治疗(BNCT)中子源的要求,在高浓铀为燃料的微型反应堆(MNSR)的基础上,以富集度19.5%的UO2为燃料,将其堆芯低浓化并且添加水平超热中子束流治疗孔道,开展超热中子束流BNCT堆堆芯低浓化初步设计。计算BNCT堆的超热中子注量率、单位超热中子注量的快中子剂量率、单位超热中子注量的γ光子剂量率、超热中子注量与热中子的注量之比、中子束流能谱等关键参数。结果表明,该设计可以得到优良的超热中子束流。  相似文献   

8.
含碳硼烷多肽衍生物的设计和应用得到越来越多人们的关注,尤其是作为硼中子俘获治疗(boron neutron capture therapy, BNCT)硼携带剂用于治疗恶性肿瘤极具发展前景。BNCT利用10B与中子俘获反应,放出α粒子杀死肿瘤细胞。作为一种二元靶向疗法,其成功关键就是硼携带剂的靶向性和亲和力的效果,当前如何设计更高效的硼携带剂是BNCT发展的主要问题。多肽作为生物必需物质,增加其衍生物靶向性的同时被肿瘤特异性摄取,是含碳硼烷多肽化合物作为硼携带剂极大的优势。本文首次对已报导的含碳硼烷多肽衍生物进行分类总结,并评估作为硼携带剂应用于中子俘获治疗的发展潜力。对含碳硼烷多肽衍生物的总结,将为新一代硼携带剂设计用于中子俘获治疗发展提供研究动力。  相似文献   

9.
正癌症已成为威胁人类健康的头号杀手,作为二元靶向辐射治疗的硼中子俘获疗法(BNCT)以其潜在的功效引起了人们极大的兴趣,中子源的中子谱学测量是BNCT研究的重要环节。目前国际上推荐的BNCT中子能谱测量装置以阈活化片探测器和多球谱仪为主,它们可覆盖BNCT治疗束的全能区,前者适合于伴随强γ辐  相似文献   

10.
正【国际原子能机构网站2020年6月24日报道】国际原子能机构(IAEA)近日与日本冈山大学签署为期三年的合作协议,为双方在硼中子俘获疗法(BNCT)领域加强合作建立了框架。BNCT是一种具备大规模商用前景的癌症放射疗法:先把含硼靶向药物注入人体,待药物在癌细胞内积累到一定程度时,用核反应堆或加速器中子源产生的中子射线照射患者病灶处,中子与硼元素发生核反应,产生巨大能量,杀死硼元素所在的癌细胞,而正常细胞极少摄  相似文献   

11.
为得到满足硼中子俘获治疗(BNCT)系统所要求的超热中子辐射场,利用清华大学试验核反应堆中子源,采用蒙特卡罗(MC)计算方法,设计了两种产生超热中子辐射场的工程理论方案,并对这两种方案进行了分析与对比.结果表明,方案1比方案2更具有优势,故确定方案1为BNCT系统最终设计方案.  相似文献   

12.
硼中子俘获治疗(boron neutron capture therapy, BNCT)是基于细胞水平的二元靶向新型放射疗法,其治疗机理是利用10B(n,ɑ)7Li*的核裂变反应,产生的α和7Li粒子在细胞尺度内释放所有能量,选择性杀伤肿瘤细胞而对周围正常组织几乎没有影响。相比传统的放疗,BNCT具有精准靶向定位、高生物效应、短疗程的优势,是国际粒子治疗的热点。目前BNCT正在推行临床试验,在瘤内动态、定量监测含10B药物的硼浓度是实现BNCT“增效、减副”的关键要素。本文简要介绍了BNCT治疗原理,总结了BNCT治疗过程中含硼药物的多种监测方法,包括物理测量法、核测量法、化学测量法以及利用新型分子影像技术(如正电子发射断层成像、磁共振成像、光学成像等)原位、动态、定量监测的新方法,分析了各种方法的优势与局限性,并提出未来BNCT治疗过程中硼浓度精准监测的新发展方向,旨在实现BNCT精准治疗。  相似文献   

13.
目前,对硼中子俘获治疗(BNCT)进行剂量计算时普遍使用Synder模型,本文依据中国人的头部解剖特征,对该模型进行重建,建立了修正Synder模型。在该模型基础上,利用MCNP程序编制出放射性治疗软件,计算了无含硼药物和有含硼药物时不同能量的中子在头部的剂量深度分布,并对计算结果进行比较分析。计算结果为我国即将进行的BNCT临床治疗研究有一定的助益。  相似文献   

14.
在硼中子俘获治疗(BNCT)中,束流整形体是BNCT装置产生高品质中子束的关键部件之一,其设计至关重要。本文基于2.5 MeV质子打锂靶产生中子的过程,对加速器驱动的BNCT中子源的束流整形体进行了可行性方案设计,研究了慢化体厚度差异对出口束流品质、头部模型中的剂量分布和临床参数等方面的影响。研究表明,可行性方案设计在30 mA质子束流驱动下,可达到IAEA对束流品质的要求;在本文3种慢化体厚度设计下,随着慢化体厚度的增加,出口超热中子束流强度减小,快中子份额减小,进一步导致优势深度变浅,正常组织最大剂量率减小,治疗时间变长。  相似文献   

15.
杨玉青  宋虎  宋宏涛  蒲满飞 《核技术》2011,34(6):465-471
硼中子捕获治疗(boron neutron capture therapy,BNCT)是利用10B(n,α)7Li反应产生的高能α粒子和反冲7Li原子进行治疗的高传能线密度辐射治疗方式,含硼化合物是硼中子捕获治疗的重要方面,其中含硼卟啉是上世纪90年代起广受关注的含硼化合物.介绍了硼中子捕获治疗及含硼卟啉的特点,阐述了...  相似文献   

16.
基于加速器的硼中子俘获治疗(AB-BNCT)设备是一种基于加速器产生的超热中子的癌症治疗装置,可以建在人口密集地区的医院。BNCT治疗对于中子注量率和各种沾污有严格的要求,为满足这些要求需对中子束流整形装置进行优化设计。本文以14 MeV回旋加速器为基础,研究了一种基于遗传算法的束流整形装置(BSA)的优化设计方案,利用遗传算法对束流整形装置内部材料及尺寸进行设计优化。结果表明,该方法可高效地实现多目标优化设计。该方法经过修改能够用于核工程其他相关领域的设计。  相似文献   

17.
7Li(p,n)反应以中子产额大、反应阈能低等优点成为硼中子俘获治疗加速器驱动中子源所用中子反应的候选类型之一。本文重点研究了该中子产生反应作为加速器驱动中子源的中子产额及其能谱特性,并对产生的高能中子束流进行慢化,使其满足BNCT治疗要求。首先采用蒙特卡罗程序MCNPX2.5.0模拟加速器7Li(p,n)反应过程,得到1.9 3.0 MeV能量入射质子的中子产额及其能谱,并详细研究了质子入射能量为2.5 MeV的最佳条件下产生的中子束流特性;进而提出中子束流的慢化设计方案,并对慢化所得超热中子束品质进行分析研究。模拟计算结果表明,10 mA流量的2.5 MeV能量入射质子所产生的中子束经过慢化处理后,可以很好地满足硼中子俘获治疗的中子束流要求。  相似文献   

18.
介绍了硼中子俘获疗法(BNCT)治疗肿瘤的原理及特点,及其相关技术研究进展;从5个方面提出了建议,即寻求理想的核素化合物,研究精确的剂量测算体系,开发更合理的中子源,开发更好的硼携带剂,将BNCT与其它疗法结合以提高疗效。  相似文献   

19.
应用MCNP 4B程序模拟计算了硼中子俘获治疗(BNCT)人体头颅等效模型开颅时的宏观吸收剂量分布.采用含有肿瘤体的双椭球结构的等效模型,模拟了深部肿瘤、浅部肿瘤和表层肿瘤3个算例,计算了正常组织及肿瘤体内的宏观吸收剂量分布.计算结果表明,照射后部分网格的吸收剂量低于治疗标准18 Gy,但在同一网格中,肿瘤越靠近表层,吸收剂量越大,治疗效果越好.  相似文献   

20.
硼中子俘获治疗(Boron Neutron Capture Therapy,BNCT)是一种具有广阔前景的癌症治疗方法。氘氚中子源是未来可供选择的BNCT中子源之一,由于氘氚中子源产生的中子能量为14.1 MeV,不能直接用于BNCT,需要进行束流慢化整形。使用蒙特卡罗模拟程序MCNP5设计了相应的束流整形组件(Beam Shaping Assembly,BSA),模拟验证了用半径为14 cm的天然铀球做中子倍增层的优越性,计算结果表明:采用50 cm厚的BiF3和10 cm厚的TiF3组合慢化层,17 cm厚的AlF3补充慢化层,0.2 mm厚的Cd热中子吸收层,3.5 cm厚的Pb作为γ屏蔽层,以及10 cm厚的Pb反射层,获得了较为理想的治疗中子束,输出中子束的空气端参数满足国际原子能机构(International Atomic Energy Agency,IAEA)的建议值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号