首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La2/3 Sr1/3 Mn1-x ZnxO3films (x =0.05, 0.1,0.3, and 0.5) were prepared using magnetron sputtering method, and the effect of Zn doping on transport properties of the films was studied. An analysis of X-ray diffraction showed that the main phase of the bulk target was orthorhombic and the films had better epitaxial character. It was found that the films with x =0.05 and x =0.1 exhibited typical insulator-metal transition. No transition of the films with x≥0.3 was observed and the dominant transport was variable-range hopping due to observable secondary phase ZnO. These could be attributed to the Zn doping effect on manganites.  相似文献   

2.
The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented that with the inerease of the doping concentrations of La^3+ and Gd^3+ ions, the d-value of (Y0.96-xLnxCe0.04)3Al5O12 (Ln = Gd, La) inereased and the larger the doping ion, the stronger the effect would be. The doping amount causing phase transition in (Y0.96-xLnxCe0.04)3Al5O12 decreased with the inerease of the ionic radii of the doping lanthanide ions (La^3+: 0.106 nm, Gd^3+: 0. 094 nm, Lu^3+ : 0.083 nm). The bigger doping ion of Gd^3+ made the emission of (Y0.96-xGdxCe0.04)3Al5O12 move to red spectral region, but the smaller one of Lu^3+ made it blue.  相似文献   

3.
The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤ x ≤ 1 ). The compounds have a monoclinic structure (space group P21/n) and the cell volume expands monotonically with La doping. The Tc and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-x LaxMnMoO6 decreases only at low doping levels (x ≤0.2); while at high doping levels (0.8≤x ≤1), electrical resistivity tends to increase greatly. The resuits suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.  相似文献   

4.
In recent years,the fields of application of the(Tb,Dy)Fe2giant magnetostrictive materials,as ad-vancedfunctional materials,have become wider.Suchmaterials can be composed by pseudo-binaryRExRE′1-xFe2compounds that have the same sign ofmagnetostriction but the opposite sign of anisotropy,inorder to mini mize the magnetic anisotropy while stillmaintaining a large positive magnetostriction[1].Ac-cordingto Steven′s calculation,inthe magnetocrystal-line anisotropy and mangetostriction of rare…  相似文献   

5.
Nd55-x Al10+x Fe15 (x =0, 5, 10) bulk glass-forming alloys with distinct glass transition in differential scanning calorimetry (DSC) traces were obtained by suction casting, The glass forming ability (GFA) of the alloys was investigated. It was found that the reduced glass transition temperature (Trg) and the parameter γ of the alloys increased with the increasing concentration of Al. The glass formation enthalpy of the alloys was calculated based on Miedema's model, and it was suggested that the GFA of the alloys could be enhanced by the decrease of the glass formation enthalpy with Al additions.  相似文献   

6.
Crystal Growth and Spectral Properties of Yb^3+ :KY(WO4 )2   总被引:2,自引:0,他引:2  
Laser crystal Yb:KYW was grown by the Kyropoulos method. A grown crystal was identified as β-Yb:KYW by XRD. By TG-DTA the melting point and transition point of the crystal are 1045 and 1010 °C, respectively. Infrared spectrum and Raman spectrum were measured, and the vibrational frequencies of infrared and Raman active modes for Yb:KYW crystal were assigned. Absorption spectrum of Yb:KYW shows that there are two intensive absorption peaks at 940 and 980 nm, respectively, and the absorption cross section is 1.34 × 10−19 cm2 at chief peak of 980 nm. There exist three intensive emission peaks in Yb:KYW at 990, 1010 and 1030 nm, respectively, and the emission line width of the chief peak 1030 nm runs up to 16 nm. It was calculated that the peak emission cross section is 3.1 × 10−20 cm2 at 1030 nm.  相似文献   

7.
Recently,researchonmagnetocaloriceffect(MCE)hasattractedagreatdealofinterestinrare earth(RE)basedcompoundsbecauseoftheirenergy efficiencyandenvironmentalsafetyformagneticrefrig eration.Afirst ordermagneticphasetransitionwas foundintheintermetalliccompoundsRECo2(RE=Er,Ho,Dy)withMgCu2typestructure[1,2],leadingtoa largemagneticentropychangeforthesecompounds,whereasasecond ordertransitionwasfoundinTbCo2andGdCo2.IntheintermetalliccompoundsRECo2,theloweringofd electronconcentrationbythesubst…  相似文献   

8.
The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Catalytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy/Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.  相似文献   

9.
Thermoelectric Properties of CexCo4Sb12 Prepared by MA-SPS   总被引:1,自引:1,他引:0  
Starting with elementary powders, thermoelectric materials CexCo4Sb12 were prepared by mechanical alloying and spark plasma sintering (MA-SPS). XRD analyses reveal that the expected major phase, named skutterudite was formed in MA process and was kept after SPS. The thermoelectric properties of MA-SPS samples including resistivity, Seebeck coefficient, power factor, thermal conductivity and the dimensionless figure of merit (ZT) were studied by varying Ce content and temperature. Depending on Ce levels, both P and N types of thermoelectric semiconductors were obtained. MA-SPS sintered Ce1.0Co4Sb12 exhibits the highest ZT in the range of 100-500℃ and the maximum ZT is found at x=1.0 and 400℃.  相似文献   

10.
In order to reduce the cost of LaNi5 based hydrogen storage alloys, effect of substitution of Mn for Ni on structural and electro-chemical properties of LaNi4-xFeMnx(x=0-0.8) hydrogen storage alloys was studied systematically. X-ray diffraction (XRD) and scanning electron microscope (SEM) showed that LaNi5 and La2Ni7 phases were invariably present in all alloy samples, and when x≥0.4, (Fe,Ni) phase was observed. Electrochemical studies revealed that the discharge capacity reached a maximum value of 306.4 mAh/g when x=0.2 and the cycling stability decreased with the increase of x.With the increase of Mn content, hydrogen diffusion coefficient decreased, whereas high rate discharge-ability (HRD) and exchange current density first increased slowly when x≤0.2 and then decreased markedly when x=0.8,indicating that electrochemical reaction on the surface of alloy electrodes had strong influence on kinetic property.  相似文献   

11.
Pr(Ga1-xCox)0.9Mg0.1O3-δ (x=0, 0.1, 0.2, 0.3) was synthesized using solid-state reaction technique to study the effects of Co doping on their structure and properties. Room and high temperature XRD, DSC and electrical conductivity measurement with D.C. four-probe technique were adopted in the study. The results indicated its orthorhombic-distorted perovskite structure at room temperature. PrGa0.9Mg0.1O3-δ maintained its orthorhombic-distorted structure between 298 and 1173 K. For Pr(Ga0.7Co0.3)0.9Mg0.1O3-δ, such structure existed below 873 K. From 873 to 1173 K, it possessed tetragonal structure. The transformation from orthorhombic to tetragonal structure at 873 K was of second order. The intrinsic volume thermal expansion of tetragonal structured Pr(Ga0.7Co0.3)0.9Mg0.1O3-δ Was about 50% higher than those of PrGa0.9Mg0.1O3-δ. The electrical conductivity increased with Co content. The activation energies of conduction for Pr(Ga1-xCox)0.9Mg0.1O3-δ are in range from 0.197 to 0.246 eV, much lower than 1.543 eV for PrGaO3.  相似文献   

12.
The microstructure, hydriding performance, and electrochemical properties of LaNi4.0Ai0.2Fe0.4Cu0.4-x Snx(x = 0- 0.4) hydrogen storage alloys prepared by casting were investigated using XRD, SEM, pressure-composition isotherms, and electrochemical measurements. Substitution of Sn for Cu leads to the precipitation of LaNiSn phase. With increasing amount of tin substitution, cell volume, plateau pressures, and discharge capacities of the alloys decrease, whereas the cycle life of the alloys improves.  相似文献   

13.
Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminescence and scintillation properties of the crystals were investigated. The crystal annealed in air showed the highest luminescence intensity under blue light or vacuum ultraviolet excitation in comparison with that annealed in reducing flux or the as-grown crystal. Under X-ray excitation, crystal annealed in reducing atmosphere had the lowest light yield, and crystal annealed in air had the fastest decay time under ^137Cs 662 keV γ-ray excitation. Different annealing treatments resulted in different luminescence and scintillation properties, which might related with oxygen vacancies or defect existing in the crystals.  相似文献   

14.
The (Ba1- x, Srx ) 2 SiO4 : EU^2+ green-emitting phosphors were synthesized by conventional solid-state reaction in a CO-reductive atmosphere, and their luminescent properties were investigated. The XRD data show that the Ba/Sr ratio not only affects the lattice parameters, but also influences the emission peak. The excitation spectra indicate that this phosphor can be effectively excited by UV light from 370 to 470 nm. The emission band is due to the 4f^65d^1→4f^7 transition of the Eu^2+ ion. With an increase in x, the emission band shifts to longer wavelength and the reason was discussed. The emission spectra exhibit a satisfactory green performance under different excitation wavelength(380,398,412,420,460 nm). (Ba1- x, Srx ) 2 SiO4 : EU^2+ is a promising phosphor for green white-lighting-emission diode by ultraviolet chip.  相似文献   

15.
Luminescence Properties of Sm^3+ doped Bi2ZnB2O7   总被引:4,自引:0,他引:4  
The phosphors of (Bi1- x Smx ) 2ZnB2O7 ( x = 0. 01, 0. 03, 0. 05, 0. 07, and 0. 09) were synthesized by conventional solid state reaction. The purity of all samples was checked by X-ray powder diffraction (XRD). XRD analysis shows that all these compounds are of a single phase of Bi2ZnB2O7, indicating that the Bi^3+ in Bi2ZnB2O7 can be partly replaced by the Sm^3+ without the change of crystal structure. The excitation and emission spectra at room temperature show the typical 4f-4f transitions of Sm^3+ . The dominant excitation line is around 404 nm due to ^6H5/2→^4K11/2 and the emission spectrum consists of a series of lines at 563, 599, 646, and 704 nm due to ^4G5/2→^6H5/2, ^6H7/2, ^6H9/2, and ^6H11/2, respectively. The optimal concentration of Sm^3+ in Bi2ZnB2O7 is about 3mol% (relative to lmol Bi^3+ ) and the critical distance Rc was calculated as 2.1 nm. The temperature dependence of the emission intensity of Bi1.94Sm0.06ZnB2O7 was examined in the temperature range between 100 and 450 K. The quenching temperature where the intensity has dropped to half of the initial intensity is 280 K. The lifetime for Sm^3+ in Bi1.94Sm0.06ZnB2O7 is fitted as a value of 0.29 and 1.03 ms.  相似文献   

16.
La0.8Sr0.2MnO3−δ was synthesized by the Pechini's method. The XRD pattern and TEM indicate the formation of the perovskite without the presence of secondary phases. It was found that La0.8Sr0.2MnO3−δ sample prepared at 1000 °C in air atmospheres, contains about 13.11% of the manganese as Mn4+ and 86.89% of the manganese as Mn3+. The electric measurements were carried out for La0.8Sr0.2MnO3–δ nanoceramics by using impedance spectroscopy methods and found to be 0.1 S/cm at 250 °C similar to the typical value of La0.8Sr0.2MnO3-δ materials. Its dependence on reciprocal temperature shows quite complicated mechanism of conduction.  相似文献   

17.
A series of rare earth compound oxides with the formula of La0.8Sr0.2Mn1-xCoxO3( were prepared by the method of citric acid. Structures, figures and magnetic properties of the x=0.0, 0.3, 0.5, 1.0) samples were analyzed by means of XRD, SEM and SQUID. Experiment results prove that all the samples are hexagonal, but their figures and magnetic properties are different. La0.8Sr0.2MnO3 is ferromagnetic. La0.8Sr0.2Mn0.7CO0.3O3 and La0.8Sr0.2Mn0.5Co0.5O3 are ferrimagnetic. La0.8Sr0.2CoO3 is antiferromagnetic. SEM results indicate that the structure of the first three are three-dimensional reticulations which are made up of some small ellipsoids which link up at the head and the end. The fourth sample looks like some dispersed small balls.  相似文献   

18.
Samples with nominal composition of (1 - x)La0.67Ca0.33MnO3 (LCMO)/xCuO (x = 0%, 2%, 4% and 20% ) were made using a special experimental method. The temperature dependence of the resistivity (ρ) of the composites was investigated in the temperature range of 10 - 300 K and different magnetic fields of H = 0, 0.1, 0.3, 0.5, 1.0 and 3.0 T. The results showed that CuO percentage x had important effects on metal-insulator transition temperature (Tp), zero field peak resistivity (ρmax), and magnetoresistance (MR) properties of the composites. Tp shifted sharply towards low temperature with the increase of x in the range of x ≤4%, but was almost independent of x at high level of CuO content. Composites with x = 4 % and 20 % exhibited similar electrical transmission behavior. Compared with pure LCMO, enhanced magnetoresistance could be clearly observed even in a quite low magnetic field of 0.3 T. For x =4% and 20% samples, the MR value at 0.3 T could reach as high as - 88% and - 90%, respectively. XRD and SEM analysis showed that the substantial enhancement of MR, especially near Tp, was because of local spin disorder between contiguous LCMO ferromagnetic particles caused by the addition of CuO.  相似文献   

19.
The effect of Nd addition on the structure, phase transformation and magnetic properties of FePt based alloys was investigated. The results indicated that the transition temperature from ordered FCT to disordered FCC phase decreased with increasing Nd concentration, but for alloys quenched rapidly from the γ phase region into ice-water, it increased with increasing Nd. The Nd element not only effectively reduced the grain size of the ordered phase but also decreased the degree of the ordered phase and refined the grains of the FCC matrix phase. The remanence ratio and coereivity of the FePt based alloy as a function of the Nd content had maximum values, respectively.  相似文献   

20.
Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The emission spectra and excitation spectra of samples were measured. J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated, and the concentration quenching of Eu3+ luminescence in different matrixes were studied. The results indicated that effective Eu3+:5D0-7F2 red luminescence could be achieved while excited by 395 nm near-UV light and 465 nm blue light in Gd2WO6 host, which was similar to the familiar Gd2(WO4)3:Eu. Therefore, the Gd2WO6:Eu red phosphors might have a potential application for white LED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号