首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We used physical and pharmacokinetic modeling to estimate personal exposures to respirable particle (RSP) and carcinogenic particulate polycyclic aromatic hydrocarbon (PPAH) air pollution from second-hand smoke (SHS) from the increase in urinary cotinine of eight patrons of three bars in Bismarck, North Dakota. We compared SHS-RSP levels to the U.S. Air Quality Index (AQI), used to forecast outdoor air pollution conditions. We measured smoker density and air exchange rates to generalize our results. Urinary cotinine increased by an average of 4.28 ng/ml to 6.88 ng/ml to 9.55 ng/ml above preexposure background from 6-hr exposures in the three bars. Corresponding estimated SHS-RSP levels were, respectively, 246 microg/m3, 396 microg/m3, and 549 microg/m3, comparable to those measured in 6 Wilmington, Delaware, bars and in 14 western New York bars. Estimated personal SHS-RSP air pollution exposures for the eight subjects, when converted to the 24-hr averaging time of the AQI, were "code red" (unhealthy). Measured outdoor air quality RSP levels for the same period were 1%-3% of the indoor RSP levels in the three bars, and were AQI "code green" (healthy). Estimated SHS-PPAH levels were comparable to peak 3-hr PPAH levels reported at a highway tollbooth. Bismarck cotinine-estimated SHS-RSP varied with smoker density, as did measured SHS-RSP levels in smoking bars in Delaware and New York. Our results show that smoking in bars produces levels of personal air pollution for bar patrons that merit air pollution alerts when sustained in the outdoor air.  相似文献   

2.
The paper presents the results of a study conducted to investigate indoor air quality within residential dwellings in Lao PDR. Results from PM(10), CO, and NO(2) measurements inside 167 dwellings in Lao PDR over a five month period (December 2005-April 2006) are discussed as a function of household characteristics and occupant activities. Extremely high PM(10) and NO(2) concentrations (12 h mean PM(10) concentrations 1275 ± 98 μg m(-3) and 1183 ± 99 μg m(-3) in Vientiane and Bolikhamxay provinces, respectively; 12 h mean NO(2) concentrations 1210 ± 94 μg m(-3) and 561 ± 45 μg m(-3) in Vientiane and Bolikhamxay, respectively) were measured within the dwellings. Correlations, ANOVA analysis (univariate and multivariate), and linear regression results suggest a substantial contribution from cooking and smoking. The PM(10) concentrations were significantly higher in houses without a chimney compared to houses in which cooking occurred on a stove with a chimney. However, no significant differences in pollutant concentrations were observed as a function of cooking location. Furthermore, PM(10) and NO(2) concentrations were higher in houses in which smoking occurred, suggestive of a relationship between increased indoor concentrations and smoking (0.05 < p < 0.10). Resuspension of dust from soil floors was another significant source of PM(10) inside the house (634 μg m(-3), p < 0.05).  相似文献   

3.
Exposure to indoor air pollution from household energy use depends on fuel, stove, housing characteristics, and stove use behavior. We monitored three important indoor air pollutants-respirable particles (RPM), carbon monoxide (CO), and sulfur dioxide (SO2)-for a total of 457 household-days in four poor provinces in China (Gansu, 129 household-days; Guizhou, 127 household-days; Inner Mongolia, 65 household-days; and Shaanxi, 136 household-days), in two time intervals during the heating season to investigate spatial and temporal patterns of pollution. The two provinces where biomass is the primary fuel (Inner Mongolia and Gansu) had the highest RPM concentrations (719 microg/m3 in the single cooking/living/bedroom in Inner Mongolia in December and 351-661 microg/m3 in different rooms and months in Gansu); lower RPM concentration were observed in the primarily coal-burning provinces of Guizhou and Shaanxi (202-352 microg/m3 and 187-361 microg/m3 in different rooms and months in Guizhou and Shaanxi, respectively). Inner Mongolia and Gansu also had higher CO concentrations (7.4 ppm in the single cooking/living/bedroom in Inner Mongolia in December and 4.8-11.3 ppm in different rooms and months in Gansu). Among the two primarily coal-burning provinces, Guizhou had lower concentrations of CO than Shaanxi (1.2-1.8 ppm in Guizhou vs 2.0-13.3 ppm in different rooms and months in Shaanxi). In the two coal-burning provinces, SO2 concentrations were substantially higher in Shaanxi than in Guizhou. Relative concentrations in different rooms and provinces indicate that in the northern provinces heating is an important source of exposure to indoor pollutants from energy use. Day-to-day variability of concentrations within individual households, although substantial, was smaller than variation across households. The implications of the findings for designing environmental health interventions in each province are discussed.  相似文献   

4.
Linkages between household energy technology, indoor air pollution, and greenhouse gas (GHG) emissions have become increasingly important in understanding the local and global environmental and health effects of domestic energy use. We report on GHG emissions from common Kenyan wood and charcoal cookstoves. Our estimations are based on 29 d of measurements under the conditions of actual use in 19 rural Kenyan households. Carbon monoxide (CO), particulate matter (PM10), combustion phase, and fuel mass were measured continuously or in short intervals in day-long monitoring sessions. Emissions of pollutants other than CO and PM10 were estimated using emissions ratios from published literature. We estimated that the daily carbon emissions from charcoal stoves (5202 +/- 2257 g of C: mean +/- SD) were lower than both traditional open fire (5990 +/- 1843 g of C) and improved ceramic woodstoves (5905 +/- 1553 g of C), but the differences were not statistically significant. However, when each pollutant was weighted using a 20-yr global warming potential, charcoal stoves emitted larger amounts of GHGs than either type of woodstove (9850 +/- 4600 g of C for charcoal as compared to 8310 +/- 2400 and 9649 +/- 2207 for open fire and ceramic woodstoves, respectively; differences not statistically significant). Non-CO2 emissions from charcoal stoves were 5549 +/- 2700 g of C in 20-yr CO2 equivalent units, while emissions were 2860 +/- 680 and 4711 +/- 919 for three-stone fires and improved ceramic stoves, respectively, with statistically significant results between charcoal and wood stoves. Therefore in a sustainable fuel-cycle (i.e., excluding CO2), charcoal stoves have larger emissions than woodstoves. When the emissions from charcoal production, measured in a previous study, were included in the assessment, the disparity between the GHG emissions from charcoal and firewood increased significantly, with non-CO2 GHG emissions factors (g of C/kg of fuel burned) for charcoal production and consumption 6-13 times higher than emissions from woodstoves. Policy implications and options for environment and public health are discussed.  相似文献   

5.
Particulate matter (PM) is an important metric for studying the health effects of household air pollution. There are limited data on PM exposure for children in homes that use biomass fuels, and no previous study has used direct measurement of personal exposure in children younger than 5 years of age. We estimated PM(2.5) exposure for 1266 children in The Gambia by applying the cookhouse PM(2.5)-CO relationship to the child's CO exposure. Using this indirect method, mean PM(2.5) exposure for all subjects was 135 ± 38 μg/m(3); 25% of children had exposures of 151 μg/m(3) or higher. Indirectly estimated exposure was highest among children who lived in homes that used firewood (collected or purchased) as their main fuel (144 μg/m(3)) compared to those who used charcoal (85 μg/m(3)). To validate the indirect method, we also directly measured PM(2.5) exposure on 31 children. Mean exposure for this validation data set was 65 ± 41 μg/m(3) using actual measurement and 125 ± 54 μg/m(3) using the indirect method based on simultaneously-measured CO exposure. The correlation coefficient between direct measurements and indirect estimates was 0.01. Children in The Gambia have relatively high PM(2.5) exposure. There is a need for simple methods that can directly measure PM(2.5) exposure in field studies.  相似文献   

6.
Daily PM2.5 samples were repeatedly collected (1-8 times) in the homes of elderly nonsmoking individuals with coronary heart disease in Amsterdam, The Netherlands (33 individuals) and Helsinki, Finland (44 individuals). Sources of indoor PM2.5 were evaluated using a two-way multilinear engine model. Because the indoor elemental data lacked a traffic marker, separation of traffic related PM was attempted by combining the indoor data with fixed site outdoor data that also contained NO. Six outdoor sources, including long-range transport (LRT), urban mixture, oil combustion, traffic, sea-salt, and soil were identified, and three indoor sources were resolved: resuspension, potassium-rich and copper-rich sources. The average contribution of the indoor factors was 6% (1.1 microg m(-3)) and 22% (2.4 microg m(-3)) in Amsterdam and Helsinki, respectively. The highest longitudinal correlations between source-specific outdoor and indoor PM2.5 concentrations were found for LRT and urban mixture; the median R was above 0.6 for most sources. The longitudinal correlations were lower in Helsinki than in Amsterdam. Indoor-generated PM2.5 was not related to ambient concentrations. We conclude that using outdoor and indoor data together improved the source apportionment of indoor PM2.5. The results support the use of fixed site outdoor measurements in epidemiological time-series studies on outdoor air pollution.  相似文献   

7.
A study of personal, indoor, and outdoor exposure to PM2.5 and associated elements has been carried out for 37 residents of the Research Triangle Park area in North Carolina. Participants were selected from persons expected to be at elevated risk from exposure to particles, and included 29 persons with hypertension and 8 cardiac patients with implanted defibrillators. Participants were monitored for 7 consecutive days in each of four seasons. One goal of the study was to estimate the contribution of outdoor PM2.5 to indoor concentrations. This depends on the infiltration factor Finf, the fraction of outdoor PM2.5 remaining airborne after penetrating indoors. After confirming with our measurements the findings of previous studies that sulfur has few indoor sources, we estimated an average Finf for each house based on indoor/outdoor sulfur ratios. These estimates ranged from 0.26 to 0.87, with a median value of 0.55. Since these estimates apply only to particles of size similar to that of sulfur particles (0.06-0.5 microm diameter), and since larger particles (0.5-2.5 microm) have lower penetration rates and higher deposition rates, these estimates are likely to be higher than the true infiltration factors for PM2.5 as a whole. In summer when air conditioners were in use, the sulfur-based infiltration factor was at its lowest (averaging 0.50) for most homes, whereas the average Finf for the other three seasons was 0.62-0.63. Using the daily estimated infiltration factor for each house, we calculated the contribution of outdoor PM2.5 to indoor air concentrations. The indoor-generated contributions to indoor PM2.5 had a wider range (0-33 microg/m3) than the outdoor contributions (5-22 microg/m3). However, outdoor contributions exceeded the indoor-generated contributions in 27 of 36 homes. A second goal of the study was to determine the contribution of outdoor particles to personal exposure. This is determined by the "outdoor exposure factor" Fpex, the fraction of outdoor PM2.5 contributing to personal exposure. As with Finf, we estimated Fpex by the personal/outdoor sulfur ratios. The estimates ranged from 0.33 to 0.77 with a median value of 0.53. Outdoor air particles were less important for personal exposures than for indoor concentrations, with the median outdoor contribution to personal exposure just 49%. We regressed the outdoor contributions to personal exposures on measured outdoor PM2.5 at the central site. The regressions had R2 values ranging from 0.19 to 0.88 (median = 0.73). These values provide an indication of the extent of misclassification error in epidemiological estimates of the effect of outdoor particles on health.  相似文献   

8.
Particle mass and number measurements in a church indicate significant increases of indoor particle concentrations during the burning of incense. Generally, varying concentration regimes can be attributed to different "modes of indoor activity" and emission sources. While periods of candle burning are negligible concerning particle concentrations, increases by a factor of 6.9 and 9.1 during incense burning were observed for PM10 and PM1, respectively. At maximum, indoor PM10 shows an 8.1-fold increase in comparison to outdoor measurements. The increase of particles < 2 microm is significantly enhanced in comparison to larger particles. Due to a particle decay rate of 0.9 h(-1) post-service concentrations are elevated for a time span of approximately 24 h above indoor background concentrations.  相似文献   

9.
Acrolein, a volatile, unsaturated aldehyde, is a known respiratory toxicant and one of the 188 most hazardous air pollutants identified by the U.S. EPA. A newly developed analytical method was used to determine residential indoor air concentrations of acrolein and other volatile aldehydes in nine homes located in three California counties (Los Angeles, Placer, Yolo). Average indoor air concentrations of acrolein were an order of magnitude higher than outdoor concentrations at the same time. All homes showed similar diurnal patterns in indoor air concentrations, with acrolein levels in evening samples up to 2.5 times higherthan morning samples. These increases were strongly correlated with temperature and cooking events, and homes with frequent, regular cooking activity had the highest baseline (morning) acrolein levels. High acrolein concentrations were also found in newly built, uninhabited homes and in emissions from lumber commonly used in home construction, suggesting indoor contributions from off-gassing and/or secondary formation. The results provide strong evidence that human exposure to acrolein is dominated by indoor air with little contribution from ambient outdoor air.  相似文献   

10.
Recent studies on separated particle-size fractions highlight the health significance of particulate matter smaller than 2.5 microm (PM2.5), but gravimetric methods do not identify specific particle sources. Diesel exhaust particles (DEP) contain elemental carbon (EC), the dominant light-absorbing substance in the atmosphere. Black smoke (BS) is a measure for light absorption of PM and, thus, an alternative way to estimating EC concentrations, which may serve as a proxy for diesel exhaust emissions. We analyzed PM2.5 and BS data collected within the EXPOLIS study (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) in Athens, Basel, Helsinki, and Prague. 186 indoor/outdoor filter pairs were sampled and analyzed. PM2.5 and BS levels were lowest in Helsinki, moderate in Basel, and remarkably higher in Athens and Prague. In each city, Spearman correlation coefficients of indoor versus outdoor were higher for BS (range rspearman: 0.57-0.86) than for PM2.5 (0.05-0.69). In a BS linear regression model (all data), outdoor levels explained clearly more of indoor variation (86%) than in the corresponding PM2.5 model (59%). In conclusion, ambient BS seizes a health-relevant fraction of fine particles to which people are exposed indoors and outdoors and exposure to which can be assessed by monitoring outdoor concentrations. BS measured on PM2.5 filters can be recommended as a valid and cheap additional indicator in studies on combustion-related air pollution and health.  相似文献   

11.
Poor air quality within swine concentrated animal feeding operations (CAFOs) poses a threat to workers, the surrounding community, and farm production. Accordingly, the current study was conducted to evaluate a technology for reducing air pollution including particulate matter (PM), viable bacteria, and ammonia within such a facility. The technology consists of an acid-oil-alcohol aerosol applied daily. Its effectiveness was evaluated by comparing air quality from before to after treatment and between treated and untreated sides of a barn separated by an impervious partition. On the untreated side, air quality was typical for a swine CAFO, with mean PM2.5 of 0.28 mg/m3 and PM(TOT) of 1.5 mg/m3. The treatment yielded a reduction in PM concentration of 75-90% from before to after treatment. Effectiveness increased with time, application, and particle size (40% reduction for 1 microm and 90% for >10 microm). Airborne bacteria levels (total bacteria, Enterobacteriaceae, and gram-positive cocci) decreased one logarithmic unit after treatment. In contrast, treatment had no effect on ammonia concentrations. These findings demonstrate the effectiveness of an intervention in yielding exposure and emission reductions.  相似文献   

12.
Time series (1996-2000) of levels of PM (PM10 and TSP) and gaseous pollutants recorded in air quality monitoring networks from Northeastern Spain were interpreted using meteorological data and satellite observations of African dust plumes. The main objective of this study was to identify the processes affecting time variations of PM levels on a day-to-day and seasonal basis. From March to October PM levels at rural, urban, and industrial sites vary as a function of the concatenation of Atlantic air mass advections (Atlantic episodes with low PM levels) and regional circulations (regional events with high PM levels, very often associated with high ozone levels), which favor the aging of air masses in the Western Mediterranean basin. During these regional episodes, PM is transported from urban/industrial to rural sites by meso-scale circulations. From November to February low PM levels are recorded at rural sites, and variations in PM levels at urban/industrial sites are governed by the successive occurrence of Atlantic episodes and local urban/industrial pollution events. The African dust outbreaks take place throughout the year and may induce PM levels to increase simultaneously in large areas of the Iberian peninsula. The difference between PM concentrations measured at urban and rural sites experiences a seasonal trend similar to that of levels of NO(x) and CO, which is characterized by a winter maximum due to the higher frequency of intensive local urban pollution events. However, maximum PM levels are recorded in summer at rural sites owing to the frequent occurrence of regional episodes. Furthermore, in three years of the study period (1997, 1998, and 2000), a second-order PM maximum was also recorded at rural sites in March owing to intensive African dust outbreaks.  相似文献   

13.
The indoor environment is an important venue for exposure to fine particulate matter (PM2.5) of ambient (outdoor) origin. In this work, paired indoor and outdoor PM2.5 species concentrations from three geographically distinct cities (Houston, TX, Los Angeles County, CA, and Elizabeth, NJ) were analyzed using positive matrix factorization (PMF) and demonstrate that the composition and source contributions of ambient PM2.5 are substantially modified by outdoor-to-indoor transport. Our results suggest that predictions of "indoor PM2.5 of ambient origin" are improved when ambient PM2.5 is treated as a combination of four distinct particle types with differing infiltration behavior (primary combustion, secondary sulfate and organics, secondary nitrate, and mechanically generated PM) rather than as a "single internally mixed entity". Study-wide average infiltration factors (i.e., fraction of ambient PM2.5 found indoors) for Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study homes were 0.51, 0.78, and 0.04 (consistent with P = 0.6, 0.9, and 0.09; k = 0.2, 0.1, and 0.6 h(-1)) for PM2.5 associated with primary combustion, secondary formation (excluding nitrate), and mechanical generation, respectively. Modification of the composition, properties, and source contributions of ambient PM2.5 in indoor environments has important implications for exposure mitigation strategies, development of health hypotheses, and evaluation of exposure error in epidemiological studies that use ambient central-site PM2.5 as a surrogate for PM2.5 exposure.  相似文献   

14.
For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s?1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF? tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.  相似文献   

15.
On February 28, 2007, a severe smoke event caused by prescribed forest fires occurred in Atlanta, GA. Later smoke events in the southeastern metropolitan areas of the United States caused by the Georgia-Florida wild forest fires further magnified the significance of forest fire emissions and the benefits of being able to accurately predict such occurrences. By using preburning information, we utilize an operational forecasting system to simulate the potential air quality impacts from two large February 28th fires. Our "forecast" predicts that the scheduled prescribed fires would have resulted in over 1 million Atlanta residents being potentially exposed to fine particle matter (PM2.5) levels of 35 microg m(-3) or higher from 4 p.m. to midnight. The simulated peak 1 h PM2.5 concentration is about 121 microg m(-3). Our study suggests that the current air quality forecasting technology can be a useful tool for helping the management of fire activities to protect public health. With postburning information, our "hindcast" predictions improved significantly on timing and location and slightly on peak values. "Hindcast" simulations also indicated that additional isoprenoid emissions from pine species temporarily triggered by the fire could induce rapid ozone and secondary organic aerosol formation during late winter. Results from this study suggest that fire induced biogenic volatile organic compounds emissions missing from current fire emissions estimate should be included in the future.  相似文献   

16.
The contribution of outdoor particulate matter (PM) to residential indoor concentrations is currently not well understood. Most importantly, separating indoor PM into indoor- and outdoor-generated components will greatly enhance our knowledge of the outdoor contribution to total indoor and personal PM exposures. This paper examines continuous light scattering data at 44 residences in Seattle, WA. A newly adapted recursive model was used to model outdoor-originated PM entering indoor environments. After censoring the indoor time-series to remove the influence of indoor sources, nonlinear regression was used to estimate particle penetration (P, 0.94 +/- 0.10), air exchange rate (a, 0.54 +/- 0.60 h(-1)), particle decay rate (k, 0.20 +/- 0.16 h(-1)), and particle infiltration (F(inf), 0.65 +/- 0.21) for each of the 44 residences. All of these parameters showed seasonal differences. The F(inf) estimates agree well with those estimated from the sulfur-tracer method (R2 = 0.78). The F(inf) estimates also showed robust and expected behavior when compared against known influencing factors. Among our study residences, outdoor-generated particles accounted for an average of 79 +/- 17% of the indoor PM concentration, with a range of 40-100% at individual residences. Although estimates of P, a, and k were dependent on the modeling technique and constraints, we showed that a recursive mass balance model combined with our censoring algorithms can be used to attribute indoor PM into its outdoor and indoor components and to estimate an average P, a, k, and F(inf), for each residence.  相似文献   

17.
Exposure to increased levels of ambient particulate matter (PM) are associated with several health effects, including cardiopulmonary diseases. The formation of reactive oxygen species (ROS) is thought to play an important role in the induction of these health effects. To quantify the ROS generating capacityof PM,we developed an improved electron spin resonance (ESR) spectrometry-based method. ROS formation was measured directly on PM-containing filters, thereby avoiding the selective extraction of components and loss of material or reactivity, which is likely to occur during filter extraction. Also, ascorbic acid was added to stimulate ROS formation. This method was applied to PM10 samples originating from different sources. The radical generating capacity of PM10 from both gasoline and diesel engine exhaust was significantly higher as compared to that of PM10 from ambient or indoor air. Furthermore, in urban PM10 and PM2.5, ROS-generating capacity significantly correlated with concentrations of polycyclic aromatic hydrocarbon content and particular transition metals. This indicates thatthis improved ESR method may be a valuable tool for evaluating the relationship between ROS formation by PM and the adverse health effects associated with this type of air pollution.  相似文献   

18.
Detailed chemical analysis of wintertime PM?? collected at a rural village site in Germany showed the presence of a series of compounds that correlated very well with levoglucosan, a known biomass burning tracer compound. Nitrated aromatic compounds with molecular formula C?H?NO? (M(w) 169) correlated particularly well with levoglucosan, indicating that they originated from biomass burning as well. These compounds were identified as a series of methyl-nitrocatechol isomers (4-methyl-5-nitrocatechol, 3-methyl-5-nitrocatechol, and 3-methyl-6-nitrocatechol) based on the comparison of their chromatographic and mass spectrometric behaviors to those from reference compounds.Aerosol chamber experiments suggest that m-cresol, which is emitted from biomass burning at significant levels, is a precursor for the detected methyl-nitrocatechols. The total concentrations of these compounds in the wintertime PM??were as high as 29 ng m?3, indicating the secondary organic aerosol (SOA) originating from the oxidation of biomass burning VOCs contributed non-negligible amounts to the regional organic aerosol loading.  相似文献   

19.
为提升室内空气质量,采用纳米静电纺丝技术,在传统的玻璃纤维窗纱上沉积聚丙烯腈(PAN)纳米纤维膜,制备具有防PM2.5 作用的窗纱。探讨了PAN纺丝液质量分数、窗纱基材对纤维微观形貌的影响,考察了窗纱的透光性、透气性和防PM2.5效果。结果表明:PAN纺丝液质量分数为10%,电压为20 kV,时间为0.5 h条件下,制备的纤维直径分布均匀,平均直径约为225 nm;PAN 纳米纤维膜在窗纱纱棱处沉积较厚,而在窗纱空隙处沉积较薄,这种结构增加了纳米纤维膜与窗纱的连接力;PAN纳米纤维膜使窗纱透光率下降12%,透气率下降35%;随着过滤测试时间的增加,PM 2.5吸附效果显著,窗纱表面吸附物中含有机官能团,室内空气质量变好;测试2 h后,对PM 2.5的截留率达到63%,窗纱的透光性、透气性随PM2.5吸附程度的增加而下降。  相似文献   

20.
Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing   总被引:1,自引:0,他引:1  
Aerosol samples of PM2.5 and PM10 in a period of intensive haze-fog (HF) events were collected to investigate the chemical characteristics of air pollution in Beijing. The air quality in HF episodes was much worse than that in nonhaze-fog (NHF) days. The concentrations of elements and water-soluble (WS) ions (K+, So4(2-), and NO3-) in HF episodes were more than 10 times higher than those in NHF days. Most of the chemical species in PM2.5 and the secondary species (NH4+, So4(2-), and NO3-) in PM10 showed significant difference between HF from westerly direction (HFW) and southerly direction (HFS). The concentrations of secondary species in HFS were much higher than those in HFW, and other chemical species in HFS were lower than those in HFW. The sources of PM2.5 were more from areas on the regional scale due to its tendency for long-range transport, while PM10 was more limited to the local sources. Aerosol particles were more acidic in HFS and more alkaline in HFW. The secondary species were the major chemical components of the aerosol in HF episodes, and their concentrations increased in the order of NHF < HFW < HFS. High concentrations of the secondary aerosol in HF episodes were likely due to the higher sulfur and nitrogen oxidation rate in aqueous-phase reactions. The serious air pollution in HF episodes was strongly correlated with the meteorological conditions and the emissions of pollutants from anthropogenic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号