首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
在基于数字信号处理器(DSP)和高速AVR系列单片机的双CPU协调工作的同步相量测量单元(PMU)研究开发的基础上,进行了其通信方式的研究。PMU内部DSP与AVR单片机之间采用串行外围接口(SPI)实现高速可靠通信,以便AVR单片机完成瞬时数据和相量数据的记录、显示和通信,实现PMU独立运行;PMU与现场工控机之间采用通用串行总线(USB)接口传送瞬时数据和相量数据,实现局域分析和控制;以控制器局域网(CAN)总线和工业以太网技术相结合的通信方式把相量数据传送至测量中心实现全网分析和控制。  相似文献   

2.
针对系统电压稳定课题,提出了一种在线电压稳定监测指标。该指标采用精确的线路模型,考虑了线路分布电容的充电作用,不受无功功率流向不确定性的影响。该指标算法形式非常简单,便于微机实现。通过IEEE标准算例进行验证,结果分析表明它比其它指标有更好的指示效果。将该指标结合PMU的实时同步数据,可以实现广域测量系统在线电压稳定监测,为电压稳定控制提供更加准确的信息。  相似文献   

3.
广域测量系统研究综述   总被引:9,自引:1,他引:9  
广域测量系统WAMS(Wide Area Measurement System)主要源自电力系统时间上同步和空间上广域的要求,利用全球定位系统GPS(Global Position System)时钟同步,进行广域电力系统状态测量。回顾了国内外WAMS的发展概况。介绍了WAMS的结构,对现有功角和相量测量原理进行了比较。最后论述其同步故障录波、引入状态估计、功角监视等应用功能及发展趋势。  相似文献   

4.
关于广域测量系统及广域控制保护系统的评述   总被引:8,自引:8,他引:8  
评述广域测量系统及广域控制保护系统的构成、关键技术及应用领域,提出广域测量预警控制系统的概念.分别讨论了基于纯相量测量单元(PMU)数据的应用功能,以及结合PMU数据与模型仿真结果的应用功能.在此基础上指出广域测量预警控制系统理论和应用的瓶颈及可能的解决途径.  相似文献   

5.
6.
基于PMU的广域电网相量测量系统概述   总被引:1,自引:0,他引:1  
张爽 《广东电力》2007,20(12):26-29
随着电力系统的发展和对安全稳定性要求的不断提高,传统的以SCADA/EMS为代表的基于稳态的监控系统将难以满足实时性的要求,而基于相量测量装置(PMU)的电网广域测量系统(WAMS)却能很好地解决电力系统广域空间同步测量的问题。使电网控制中心能在统一的时标下,根据各个PMU的测量信息对电力系统的状态进行分析,并进行全电网的稳定控制、事故预警等。为此,对WAMS的组成结构、发展状况和应用前景等进行了较为详细的概述。  相似文献   

7.
首先介绍了基于PMU的系统线性量测模型和可观测性分析,接着分别介绍了5种基于系统完全可观测下的PMU优化配置算法.利用这些算法对几种IEEE标准节点系统进行PMU优化配置仿真研究.结果表明,这几种算法在解的收敛速度、解的收敛性和解的多样性方面各有其特点.因此,所提PMU优化配置方法和算法性能比较具有一定的实用性.  相似文献   

8.
广域测量系统在电力系统中的应用   总被引:1,自引:0,他引:1  
介绍了广域测量系统及其总体构成,在此基础上介绍了广域测量系统在电力系统中的应用,并展望了其未来的发展动向.  相似文献   

9.
广域测量系统集成测试方案   总被引:1,自引:1,他引:1  
广域测量系统(WAMS)又称动态实时监控系统,主要应用于各种电网实时动态行为的监视.由于电网绝大多数时间处于稳定运行状态,完整的在线测试需要长时间的数据积累,给开发、研究和工程实践带来不便,故有必要研究更高效的WAMS测试方法.文中简要回顾了WAMS的基本技术特征;针对WAMS的系统功能、算法和数据流特征并结合工程实践,提出了一种系统性的测试方法,给出了相关的评估指标.以2个实际案例为例说明了所提出的测试方案的合理性.  相似文献   

10.
基于同步相量测量技术的广域测量系统(WAMS)为电力系统各领域的研究和开发提供了全新的数据支持平台。相量数据集中器(PDC)是WAMS中连接同步相量测量单元(PMU)和测量主站的关键环节,目前多数解决方案是采用工控机来实现。实际情况表明,基于工控机的PDC在可靠性和可扩展性方面存在明显不足。采用刀片式构架理念设计的新型PDC极大地提高了其在可靠性和可扩展性方面的表现,特别是对基于IEC 61850标准过程层总线的智能变电站有很好的适应性,实际运行验证了所提出的解决方案有效、实用。  相似文献   

11.
变电站和电厂安装相量测量装置(phasor measurement unit,PMU)用于加强电力系统的动态检测和分析能力。但由于PMU相量测量装置对全球定位系统(global position system,GPS)的高度依赖以及对通道的严格要求,PMU装置故障频发。统计分析了PMU的常见故障,指出目前PMU故障包括了数据变量名称或系数错误、传输丢帧和离线文件召唤失败等情况,并针对各种情况给出解决意见。  相似文献   

12.
提出一种同步时标可自由设定的新型广域电网相量测量装置(PMU),它由频率自适应等间隔采样模块、同步时标形成模块和核心微处理器模块等构成。通过硬件电路与计算软件的合理分工与协调配合,实现了相量同步测量装置中“时间同步”与“频率同步”的解耦处理,从而装置能够根据自由设定的同步时标与时标同步方式,自动定位截取整周期采样数据(无频谱泄漏)进行高精度离散傅里叶变换(DFT)相量计算,并通过简单的方法对截取DFT数据窗时造成的时标同步偏移量进而计算相量的相角偏差量进行高精度线性修正。同时对同步时标位于DFT数据窗首、中、末点3种情况下的相量测量精度进行了仿真研究,得出了“中点同步”精度最高的正确结论。  相似文献   

13.
相量测量单元性能评价标准和测试方法   总被引:2,自引:1,他引:1  
张胜  王健  贺春 《电力系统自动化》2007,31(21):102-105
根据广域测量系统相量测量单元(PMU)的最新国际标准IEEE Std C37.118-2005,结合工程实际,从时间同步、静态测量精度、暂态响应、低频振荡辨识和通信协议一致性等方面分析了PMU的基本性能,提出了评价指标和测试方法.  相似文献   

14.
WAMS中PMU的完整周期抗混迭同步采样方法   总被引:1,自引:0,他引:1  
基于全球定位系统(GPS)的同步相量测量装置(PMU)是广域测量系统(WAMS)的重要组成部分。提出一种基于GPS同步时钟和数字信号处理器(DSP)以及高速AVR单片机的双CPU同步相量测量装置;利用DSP的一个输入捕获单元捕获GPS秒脉冲并同步到32位高精度定时器,控制每个周期采样的起始时刻,利用另一个输入捕获单元捕获频率并把相应的采样周期传送给16位定时器的周期寄存器控制该完整周期的采样间隔,从而建立了完整周期抗混迭同步采样方法,避免了因频率变化而引起的采样混迭现象;利用DSP的高精度时钟配合同步信号源以提高同步时钟的可靠性。  相似文献   

15.
基于WAMS/SCADA混合量测的电网参数辨识与估计   总被引:3,自引:4,他引:3  
针对目前电网参数辨识与估计方法存在的数值稳定性变差、易发散及易受残差污染干扰等问题,提出了一种基于混合量测的电网参数辨识与估计方法。该方法首先利用广域测量系统(WAMS)的测量数据计算相对残差,初步判断是否存在参数错误,然后利用相量测量单元(PMU)能够测量电压和电流相量的特性,建立支路两端变量之间的直接联系,对存在参数错误的支路进行辨识,并在此基础上使用智能优化算法估计支路参数。在IEEE 39测试系统上的仿真实验表明,该方法只需安装约1/2总母线数的PMU即可对全网传输线路和变压器进行参数辨识与估计。  相似文献   

16.
基于广域测量系统的次同步振荡在线监测预警方法   总被引:2,自引:1,他引:2  
及时发现并采取措施消除电力系统中的次同步振荡,对保障机组安全和电力系统稳定运行都非常重要.结合相量测量单元的工作原理,详细分析了电力系统中次同步频率成分对同步相量测量结果的影响,指出次同步振荡的存在相当于是对同步相量的幅值和相位进行调制.在此基础上,给出了基于相量测量单元上传的同步相量测量结果和励磁电流测量结果实现次同...  相似文献   

17.
《电力系统同步相量测量装置检测规范》的编制   总被引:1,自引:0,他引:1  
介绍了关于广域测量系统系列标准中的《电力系统同步相量测量装置检测规范》的编写背景及编写意义,结合我国电力系统现状,分析了编写同步相量测量装置检测规范的迫切性。阐述了该检测规范的框架结构,对规范的主要内容,如功能检验、性能试验、抗电磁干扰试验等,进行了介绍。  相似文献   

18.
刘杰 《广东电力》2008,21(12):13-17
以电力系统配置同步相量测量单元(PMU)个数最少、系统有最大测量冗余度为目标,全网可观测为约束,提出PMU最优配置模型,同时针对实际电网中存在某些重要节点已经初步安装PMU或者必须安装PMU的情况,提出了特殊约束条件,并给出了相应的求解算法。在此基础上,用改进自适应遗传算法求解此模型,保证全局最优。对某省49节点电网进行的计算表明,改进的自适应遗传算法收敛到全局最优解的概率优于传统的遗传算法和自适应遗传算法,更适用于工程实际。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号