首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
化学气相渗透2.5维C/SiC复合材料的拉伸性能   总被引:2,自引:0,他引:2  
采用等温减压化学气相浸渗(isothermal low-pressure chemical vapor infiltration,ILCVI)工艺制备了在厚度方向上具有纤维增强的2.5维(2.5 dimensional,2.5D)碳纤维增强碳化硅多层陶瓷基复合材料,从而使一端封口的防热结构部件的制备成为可能.ILCVI致密化后,复合材料的密度、孔隙率分别为1.95~2.1 g/cm3和16.5%~18%.沿经纱和纬纱两个方向对2.5D C/SiC复合材料进行室温拉伸实验.结果表明:复合材料在纵向和横向的拉伸应力-应变均表现为明显的非线性行为.复合材料具有较高的面内拉伸性能,纵横向的拉伸强度分别为326MPa和145MPa,断裂应变分别为0.697%和0.705%.复合材料的拉伸断裂为典型的韧性断裂,经纱和纬纱的断裂都表现为纤维的多级台阶式断裂以及纤维的大量拔出.  相似文献   

2.
三维针刺C/SiC复合材料的结构特征和力学性能   总被引:3,自引:0,他引:3  
采用化学气相渗透法制备了在厚度方向上具有纤维增强的三维针刺碳纤维增强碳化硅(C/SiC)陶瓷基复合材料,复合材料的密度和气孔率分别为2.15 h/cm3和16%.三维针刺C/SiC复合材料中的针刺纤维将各层紧密结合在一起,其层间抗剪切强度显著提高,为95MPa,比二维碳布叠层C/SiC复合材料的剪切强度(35MPa)高171.4%.三维针刺C/SiC复合材料的拉伸强度和弯曲强度分别为159MPa和350MPa,断裂模式为非脆性断裂,包括:裂纹扩展、偏转,碳纤维的拉伸断裂和逐步拔出.  相似文献   

3.
通过对2种丝束平纹编织碳纤维布增强SiC(C/SiC)复合材料的力学性能实验,研究了纤维束丝数(1 k和3 k)对复合材料性能的影响.实验结果表明:1 k C/SiC复合材料的拉伸模量、拉伸强度、压缩模量、压缩强度、面内剪切强度和弯曲强度分别为90.8 GPa,281.8 MPa,135.8 GPa,452.2 MPa,464.3 MPa和126.8 MPa,分别比3 k C/SiC高39%,15.8%,25%,132%,29.3%和30.2%.纤维束粗细不同是导致纤维束弯曲度和复合材料孔隙率差异的主要原因,对压缩强度的影响最大,对拉伸强度的影响最小.  相似文献   

4.
采用Pro/Engineer和ANSYS软件,对以芳纶1414为纤维增强相、丁腈橡胶为基体组成的纤维增强弹性体基复合材料进行有限元模拟分析,在考虑经纱与纬纱间摩擦接触的条件下,建立机织复合材料三维细观有限元模型,研究了复合材料的细观应力分布,并分析了纤维束纱线倾角、经纱与纬纱间摩擦系数等对复合材料细观力学性能的影响。结果表明,经纱与纬纱接触界面存在明显的应力集中现象,模型的模拟结果与实际情况吻合良好;随着纱线倾角的增加,应力集中现象趋于严重,纱线的强度保持率下降,材料的力学性能降低。  相似文献   

5.
孟志新  罗磊  陈婧旖  李斌  李敏  张毅  成来飞 《当代化工》2021,50(8):1810-1813,1871
为了探究碳纤维丝束大小对纤维束复合材料碳/碳化硅(Mini-C/SiC)拉伸性能和强度分布的影响,采用化学气相浸渗(CVI)法制备了1k Mini-C/SiC和3k Mini-C/SiC复合材料.测试了C纤维束以及Mini-C/SiC复合材料的拉伸性能,并采用两参数Weibull分布模型分析了强度分布,同时还观察了拉伸断口形貌.结果表明:3k C纤维束表现出了明显的"聚拢效应",其拉伸性能和强度稳定性均优于1k C纤维束,而且其拉伸强度、Weibull模数、特征强度、延伸率和断裂功分别比1k C纤维束的高47%、13%、46%、54%和102%.同时,1k C纤维束发生韧性断裂,3k C纤维束发生脆性断裂.3k Mini-C/SiC复合材料的拉伸性能和强度稳定性均优于1k Mini-C/SiC复合材料,其拉伸强度、Weibull模数、特征强度、延伸率和断裂功分别比1k Mini-C/SiC复合材料提高了67%、69%、63%、92%和216%,而且两者的拉伸断裂方式均为典型的脆性断裂.纤维体积分数高是大纤维丝束复合材料3k Mini-C/SiC拉伸性能和强度稳定性优于小纤维丝束复合材料1k Mini-C/SiC的主要原因.  相似文献   

6.
对平纹编织C/SiC复合材料样品拉伸破坏过程的声发射进行监测,采用基于改进遗传算法的无监督聚类方法对声发射信号进行模式识别,统计分析各类声发射模式的特征及其演化过程,结合断口分析,研究了C/SiC复合材料的拉伸强度、损伤机制与声发射信号演化之间的关系.结果表明:维断裂的声发射能量能够反映纤维/基体界面结合强度;低强度C/SiC材料中存在引起应力集中的基体富集区,在加载初期基体开裂事件占比超过50%;中强度C/SiC材料由于较强的界面,纤维损伤以单丝或部分纤维断裂事件为主;高强度C/SiC材料界面结合强度适中,纤维簇断裂是主要的失效模式.  相似文献   

7.
分别采用热膨胀仪和激光脉冲热导仪测量了2维、2.5维和3维纤维编织结构的碳纤维增强碳化硅(carbon fiber reinforced silicon carbide,C/SiC)复合材料从室温到1 400℃温度范围内纵向和横向热膨胀系数,以及厚度方向的热扩散系数.用扫描电镜、光学显微镜观察了样品的微结构.结果表明:低温段(700℃以下),3种C/SiC的纵向和横向热膨胀系数均随温度的升高而缓慢增大,并在700℃之后出现不同程度的波动;高温段(700℃以上),它们的纵向热膨胀系数和2维C/SiC的横向热膨胀系数随温度的升高而减小,而2.5维和3维C/SiC的横向热膨胀系数则随着温度的升高而迅速增大.三者厚度方向的热扩散系数均随温度的升高而减小,3维C/SiC的热扩散系数最大,分别是2.5维C/SiC和2维C/SiC的1~1.2和1.4~2倍.  相似文献   

8.
对T300碳纤维增强三维针刺碳纤维增强SiC(C/SiC)复合材料(纤维体积含量为30%)的单调和加载-卸载拉伸载荷下的拉伸行为进行了研究.结果表明:T300碳纤维增强三维针刺C/SiC复合材料的拉伸强度和断裂应变分别为129.6MPa和0.61%.单调和加载-卸载拉伸应力-应变曲线均为非线性变化,主要是复合材料中裂纹的扩展,界面相脱黏和滑移,以及纤维的逐步断裂和拔出所致,使得复合材料在拉伸载荷下呈非脆性破坏.卸载应力水平对卸载后的残余应变和再加载模量有较大影响.卸载应力小于80 MPa时,随着卸载应力的增加,残余应变线性增加,模量线性降低:卸载应力高于80MPa时,二者随着卸载应力的增加而呈二次函数快速变化.  相似文献   

9.
以碳化硅(SiC)纤维为增强体,采用真空浸渍法制备了2.5维连续SiC纤维增韧的SiO2基(SiCf/SiO2)复合材料,研究了SiC纤维编织体上不同的界面层对SiCf/SiO2复合材料力学性能的影响.化学气相渗透(CVI)法制备的热解碳(PyC)和PyC/SiC双层界面层分别使材料的抗弯强度由无界面层的52.2 MPa提高至67.4 MPa和180.3 MPa,但均使材料的韧性降低.用扫描电镜观察了材料的断口形貌,结果表明,PyC和PyC/SiC层不仅提高了材料的抗弯强度,而且增加了基体同纤维间的结合力,使基体有效地将载荷传递给纤维.PyC/SiC层能有效地保护SiC纤维,防止烧结过程中释放出的结晶水对纤维的损伤,有助于提高材料的力学性能.  相似文献   

10.
2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征   总被引:1,自引:0,他引:1  
通过单向拉伸和分段式加载-卸载实验,研究了二维编织C/SiC复合材料的宏观力学特性和损伤的变化过程.用扫描电镜对样品进行微观结构分析,并监测了载荷作用下复合材料的声发射行为.结果表明:在拉伸应力低于50MPa时,复合材料的应力-应变为线弹性;随着应力的增加,材料模量减小,非弹性应变变大,复合材料的应力-应变行为表现为非线性直至断裂.复合材料的平均断裂强度和断裂应变分别为23426MPa和0.6%.拉伸破坏损伤表现为:基体开裂,横向纤维束开裂,界面层脱粘,纤维断裂,层间剥离和纤维束断裂.损伤累积后最终导致复合材料交叉编织节点处纤维束逐层断裂和拔出,形成斜口断裂和平口断裂.  相似文献   

11.
The microstructure and crack propagation path of 2.5D SiCf/SiC composites were observed by synchrotron radiation x-ray computed micro tomography (SR-μCT) equipped with in-situ tensile device. The results showed that the pore morphologies of the SiCf/SiC composites are mainly divided into three types in three-dimension space: interconnected pores, isolated pores and micro pores in fiber bundles. The crack initiation occurred at the root of the defects under in-situ tensile load and the crack was perpendicular, parallel to the stress axis or mixed mode to propagate. At the interface scale between fiber and matrix, the crack deflection will be controlled by physical parameters such as fracture energy release rate and the modulus of elasticity. At the fiber bundle scale, the crack is easy to shear propagate along the interface between weft and warp fiber bundles due to the existence of the mechanical bonding and residual tensile stress.  相似文献   

12.
Hui Mei  Laifei Cheng 《Carbon》2009,47(4):1034-1042
The mechanical hysteresis of four ceramic matrix composites with different carbon fiber preforms, i.e. needled C/SiC, 2D C/SiC, 2.5D C/SiC, and 3D C/SiC, was investigated and compared during cyclic reloading-unloading tests. An effective coefficient of the fiber volume fraction in the direction of loading (ECFL) was defined to characterize fiber architectures of the preforms. It is shown that an increase in permanent strain and a decrease in stiffness with the applied stress were strongly affected by the ECFL. The thermal residual stress (TRS) and ultimate tensile strength of the composites are predicted theoretically related to the ECFL, and then validated by experimental results and microstructural observations. The predicted results not only demonstrate good agreement with experimental measurements, but also explain why differences in the composite ECFL result in substantial variations in TRS.  相似文献   

13.
The utility of recycled A-glass (primarily composed of soda-lime-silicate) fibers as reinforcement for structural composites has been studied. A series of plaques of unsaturated polyster composite were resin transfer molded with an A-glass continuous strand mat (CSM) and a control with E-glass CSM. The influence of fiber volume fraction on the physical and thermo-mechanical properties of the resultant composites were investigated, both before and after environmental exposure. At the maximum fiber fraction considered (nominally 29 vol%), the use of A-glass reinforcement lowered the warp direction tensile modulus from 8.6 to 7.6 GPa and strength from 139 to 100 MPa, relative to the control. Similar results were observed for both the flexural and the tensile properties, irrespective of fiber fraction and test direction (warp vs. weft), for the A-glass reinforcement. Environmental exposure was found to affect equally the properties of A-glass and E-glass fiber reinforced composites. Based upon microscopic analyses and constituent properties, the lower mechanical properties of the A-glass fibers composites have been linked to the lower properties of A-glass fibers relative to E-glass fibers. The experimental results were also used to test a micro-mechanics models for random fiber reinforced composites. Reasonable correlation was found between the experimental results and the theoretical predictions. To offset their lower mechanical properties, A-glass fibers could be used as a reinforcement in composite applications by simply increasing the fiber fraction relative to their E-glass counterpart.  相似文献   

14.
Interphase between the fibers and matrix plays a key role on the properties of fiber reinforced composites. In this work, the effect of interphase on mechanical properties and microstructures of 3D Cf/SiBCN composites at elevated temperatures was investigated. When PyC interphase is used, flexural strength and elastic modulus of the Cf/SiBCN composites decrease seriously at 1600°C (92 ± 15 MPa, 12 ± 2 GPa), compared with the properties at room temperature (371 ± 31 MPa, 31 ± 2 GPa). While, the flexural strength and elastic modulus of Cf/SiBCN composites with PyC/SiC multilayered interphase at 1600°C are as high as 330 ± 7 MPa and 30 ± 2 GPa, respectively, which are 97% and 73% of the values at room temperature (341 ± 20 MPa, 41 ± 2 GPa). To clarify the effect mechanism of the interphase on mechanical properties of the Cf/SiBCN composites at elevated temperature, interfacial bonding strength (IFBS) and microstructures of the composites were investigated in detail. It reveals that the PyC/SiC multilayered interphase can retard the SiBCN matrix degradation at elevated temperature, leading to the high strength retention of the composites at 1600°C.  相似文献   

15.
Uniaxial compression tests for two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composites along the warp and weft directions were conducted at room temperature. The results show that the stress–strain behaviors for both loading directions exhibited great anisotropy. The compressive strength was greater in the weft direction than in the warp direction, which is attributed to good confinement of the weft yarns and resisting roles of the warp yarns in the former. Microscopic examinations reveal that the fracture surfaces had good correlation with the weave architecture, and the failure mechanism was characterized by transverse shear resulting from fiber microbuckling in the axial yarns.  相似文献   

16.
2.5 D织物结构与拉伸性能的研究   总被引:2,自引:0,他引:2  
介绍了2.5D浅交弯联、浅交直联单元结构模型和纤维体积分数计算方法的建立。在此基础上设定一定的织物参数,对其复合材料拉伸性能进行了测试,分析两种结构拉伸性能的差异。通过试验可知:浅交直联经向模量和强度均大于浅交弯联经向性能,浅交弯联的纬向拉伸强度、模量大于直联的纬向性能。浅交弯联的经向强度及模量低于纬向,浅交直联的经向拉伸强度高于纬向拉伸强度。  相似文献   

17.
SiC fiber reinforced SiC matrix (SiCf/SiC) composites prepared by chemical vapor infiltration are one of promising materials for nuclear fuel cladding tube due to pronounced low radioactivity and excellent corrosion resistance. As a structure component, mechanical properties of the composites tubes are extremely important. In this study, three kinds of SiCf preform with 2D fiber wound structure, 2D plain weave structure and 2.5D shallow bend-joint structure were deposited with PyC interlayer of about 150–200?nm, and then densified with SiC matrix by chemical vapor infiltration at 1050?°C or 1100?°C. The influence of preform structure and deposition temperature of SiC matrix on microstructure and ring compression properties of SiCf/SiC composites tubes were evaluated, and the results showed that these factors have a significant influence on ring compression strength. The compressive strength of SiCf/SiC composites with 2D plain weave structure and 2.5D shallow bend-joint structure are 377.75?MPa and 482.96?MPa respectively, which are significantly higher than that of the composites with 2D fiber wound structure (92.84?MPa). SiCf/SiC composites deposited at 1100?°C looks like a more porous structure with SiC whiskers appeared when compared with the composites deposited at 1050?°C. Correspondingly, the ring compression strength of the composites deposited at 1100?°C (566.44?MPa) is higher than that of the composites deposited at 1050?°C (482.96?MPa), with a better fracture behavior. Finally, the fracture mechanism of SiCf/SiC composites with O-ring shape was discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号