首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
α-1,6-Glucosidase (isomaltase) belongs to glycoside hydrolase (GH) families 13 and 31. Genes encoding 3 isomaltases belonging to GH family 13 were cloned from filamentous fungi, Aspergillus oryzae (agl1), A. niger (agdC),and Fusarium oxysporum (foagl1), and expressed in Escherichia coli. The enzymes hydrolyzed isomaltose and α-glucosides preferentially at a neutral pH, but did not recognize maltose, trehalose, and dextran. The activity of AgdC and Agl1 was inhibited in the presence of 1 % glucose, while Foagl1 was more tolerant to glucose than the other two enzymes were. The three fungal isomaltases did not show transglycosylation when isomaltose was used as the substrate and a similar result was observed for AgdC and Agl1 when p-nitrophenyl-α-glucoside was used as the substrate.  相似文献   

2.
Quantitative analysis of the volatile flavor components in Korean alcoholic beverages (makgeolli and yakju) and Japanese sake was carried out using SPME-GC/MS. Fusel oils (n-butyl alcohol, isobutyl alcohol, isoamyl alcohol, and phenethyl alcohol), ethyl esters (ethyl acetate, isoamyl acetate, ethyl caproate, ethyl caprylate, and ethyl caprate) and aldehydes (furfural and benzaldehyde) were analyzed quantitatively by an 85 μm SPME fiber (carboxen/polydimethylsiloxane) using internal standards (1-pentanol-1-13C and methyl nonanoate). Phenethyl alcohol (85-216 ppm) and isoamyl alcohol (38-115 ppm) constituted the majority of fusel oils in all the samples. Acetic acid was detected in sour makgeolli at a high level (0.02-0.14 ppm) compared with yakju and sake. A very high level of total ethyl esters (ethyl acetate, isoamyl acetate, ethyl caprate, and phenethyl acetate), having fruit and flower flavor, was found in makgeolli. Processing the volatile flavor data by multivariate partial least squares discriminant analysis, makgeolli, yakju, and sake showed cluster separation.  相似文献   

3.
Lambic and gueuze are Belgian beers obtained by spontaneous fermentation of wort. During previous studies it was found that they result from the successive development of enterobacteria, Kloeckera and Saccharomyces yeasts, bacteria of the genus Pediococcus, and Brettanomyces yeasts. The beers are characterized by high concentrations of acetic and lactic acid, ethyl acetate and ethyl lactate. This study of the content of the higher fatty acids during a 20 month fermentation period confirms the succession of the different micro-organisms. Pure cultures of isolated yeasts and bacteria produced fatty acids which were also found in the fermenting wort at periods when these organisms were active. Lambic and Gueuze are especially rich in caprylic (C8) and capric (C10) acids. These are probably produced by Saccharomyces and Brettanomyces. Important amounts of ethyl caprylate and ethyl caprate were also found. As ethyl caprate is almost absent in other beers, it might be considered as another typical aroma component of lambic and gueuze.  相似文献   

4.
A novel substrate {Galβ1,4GlcNAcβ1,4GlcNAc-β-pNP [Gal(GlcNAc)2-β-pNP]} for assaying lysozyme activity has been designed using docking simulations and enzymatic synthesis via β-1,4-galactosyltransferase-mediated transglycosylation from UDP-Gal as the donor to (GlcNAc)2-β-pNP as the acceptor. Hydrolysis of the synthesized Gal(GlcNAc)2-β-pNP and related compounds using hen egg-white lysozyme (HEWL) demonstrated that the substrate was specifically cleaved to Gal(GlcNAc)2 and p-nitrophenol (pNP). A combination of kinetic studies and docking simulation was further conducted to elucidate the mode of substrate binding. The results demonstrate that Gal(GlcNAc)2-β-pNP selectively binds to a subsite of lysozyme to liberate the Gal(GlcNAc)2 and pNP products. The work therefore describes a new colorimetric method for quantifying lysozyme on the basis of the determination of pNP liberated from the substrate.  相似文献   

5.
The production of the acetates of isoamyl alcohol and phenethyl alcohol and the ethyl esters of the C6-C10 fatty acids was investigated in semiaerobic sugar fermentations by 56 strains of Saccharomyces cerevisiae and 3 strains of S. uvarum. The S. cerevisiae yeasts generally produced more esters than the S. uvarum yeasts. Isoamyl acetate was the main component in the ester fractions examined and others in decreasing order, were ethyl caprylate, ethyl caproate, ethyl caprate and phenethyl acetate.  相似文献   

6.
采用顶空-固相微萃取法(HS-SPME)和气相色谱-质谱联用仪(GC-MS)萃取检测鉴定黑加仑果实和果酒酵母1399酿造的黑加仑果酒芳香物质的成分和含量,对比黑加仑果实和黑加仑果酒的香气成分变化。从果实中鉴定出50种成分,占峰面积的84.22%,香气成分主要为2-甲基-3-丁烯-2-醇、4-甲基-1-戊醇、辛酸乙酯、癸酸乙酯、正戊烯、正辛醛、壬醛、己醛、戊醛等;从果酒中鉴定出48种成分,占峰面积的92.65%,主要香气成分为苯乙醇、3-甲基-1-丁醇、乙酸乙酯、辛酸乙酯、正己酸乙酯、癸酸乙酯、乙酸苯乙酯、苯乙醛等。  相似文献   

7.
According to whole-genome sequencing, Aspergillus niger produces multiple enzymes of glycoside hydrolases (GH) 31. Here we focus on a GH31 α-glucosidase, AgdB, from A. niger . AgdB has also previously been reported as being expressed in the yeast species, Pichia pastoris ; while the recombinant enzyme (rAgdB) has been shown to catalyze tranglycosylation via a complex mechanism. We constructed an expression system for A. niger AgdB using Aspergillus nidulans . To better elucidate the complicated mechanism employed by AgdB for transglucosylation, we also established a method to quantify glucosidic linkages in the transglucosylation products using 2D NMR spectroscopy. Results from the enzyme activity analysis indicated that the optimum temperature was 65 °C and optimum pH range was 6.0–7.0. Further, the NMR results showed that when maltose or maltopentaose served as the substrate, α-1,2-, α-1,3-, and small amount of α-1,1-β-linked oligosaccharides are present throughout the transglucosylation products of AgdB. These results suggest that AgdB is an α-glucosidase that serves as a transglucosylase capable of effectively producing oligosaccharides with α-1,2-, α-1,3-glucosidic linkages.  相似文献   

8.
β-L-Arabinopyranosidases are classified into the glycoside hydrolase family 27 (GH27) and GH97, but not into GH36. In this study, we first characterized the GH36 β-L-arabinopyranosidase BAD_1528 from Bifidobacterium adolescentis JCM1275. The recombinant BAD_1528 expressed in Escherichia coli had a hydrolytic activity toward p-nitrophenyl (pNP)-β-L-arabinopyranoside (Arap) and a weak activity toward pNP-α-D-galactopyranoside (Gal). The enzyme liberated L-arabinose efficiently not from any oligosaccharides or polysaccharides containing Arap-β1,3-linkages, but from the disaccharide Arap-β1,3-L-arabinose. However, we were unable to confirm the in vitro fermentability of Arap-β1,3-Ara in B. adolescentis strains. The enzyme also had a transglycosylation activity toward 1-alkanols and saccharides as acceptors.  相似文献   

9.
Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log10 cfu g−1) and spoiled (mean count 7.4 log10 cfu g−1) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P < 0.05) total aerobic count in biosurfactant treated samples, as compared to untreated samples on each day (0, 1, 2, 3) of storage. For biosurfactant treated samples the greatest increase in total aerobic count (1.3-1.7 log10 cfu g−1) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage.  相似文献   

10.
Utilizing transglycosylation reaction catalyzed by β- N -acetylhexosaminidase of Stenotrophomonas maltophilia , β-D-fructofuranosyl-(2↔1)-α- N , N ´diacetylchitobioside (GlcNAc 2 -Fru) was synthesized from N -acetylsucrosamine and N , N ´-diacetylchitobiose (GlcNAc 2 ), and β-D-fructofuranosyl-(2↔1)-α- N , N ´, N ´´-triacetylchitotrioside (GlcNAc 3 -Fru) was synthesized from GlcNAc 2 -Fru and GlcNAc 2 . Through purification by charcoal column chromatography, pure GlcNAc 2 -Fru and GlcNAc 3 -Fru were obtained in molar yields of 33.0 % and 11.7 % from GlcNAc 2 , respectively. The structures of these oligosaccharides were confirmed by comparing instrumental analysis data of fragments obtained by enzymatic hydrolysis and acid hydrolysis of them with known data of these fragments.  相似文献   

11.
The aim of this study was to assess the potential use of biosurfactants in inhibiting the Listeria monocytogenes strains adhesion to polystyrene surfaces. Surfactin and rhamnolipids were used. The adhesion profiles of 15 strains showed that most of these bacteria can be classified as moderate to strongly adherent. Both biosurfactants were able to reduce bacterial adhesion, and the effect was more pronounced against the strongly adherent strains. The most promising result was obtained for ATCC7644 strain, which showed an adhesion reduction of 84% for surfactin (30-h growth period). Rhamnolipids decreased the ATCC15313 adhesion by 82%. ATCC19112 adhesion was reduced by 53% for surfactin and purified rhamnolipid. Sodium dodecyl-sulphate was less effective than the biosurfactants, showing maximal adhesion reduction of 23% for 19112 and 7644. The purified rhamnolipid inhibited 100% of the growth of strongly adherent, suggesting that this surfactant can be exploited as a potential agent to control L. monocytogenes.  相似文献   

12.
Objective: Case control studies in adults suggest that defective alleles in the gene that codes for the hepatic cytochrome P450 2A6 (CYP2A6) protect against nicotine dependence (ND) and higher levels of cigarette consumption. These two hypotheses were tested in young adolescents.

Design: Self reports of tobacco use and ND symptoms were collected every 3–4 months in a prospective study of 1293 grade 7 students from a convenience sample of 10 schools.

Subjects: 281 smokers with genetic data were analysed; those who were not already tobacco dependent and who had inhaled (n = 228) were followed 29.9 months on average, until they became dependent or were censored.

Main outcome measures: The association between metabolic activity, represented by CYP2A6 genotype, and conversion to dependence was analysed using Cox's proportional hazards model.

Results: During follow up 67 subjects (29.4%) became dependent. Relative to CYP2A6*1/*1, having 1–2 copies of the inactive CYP2A6*2 or *4 variant was a strong risk factor for developing dependence (hazard ratio 2.8, 95% confidence 1.3 to 6.3). Subjects with 1–2 partially inactive CYP2A6*9 or *12 variants were not at increased risk. Mean past-week cigarette consumption at the end of follow up (controlling for age, sex, and number of months since first inhalation) among dependent subjects was 29.1 among normal inactivators, compared to 17.2, and 12.7 among slower (1–2 copies of *9 or *12), and slowest (1–2 copies of *2 or *4) inactivators, respectively (p = 0.09).

Conclusion: Adolescents with 1–2 copies of CYP2A6*2 or *4 are at substantially increased risk of becoming dependent but smoke less once dependent. Genetic risk for ND may need to be considered in the conceptualisation of tobacco control programmes for adolescents.

  相似文献   

13.
Fermented marc was exposed to a controlled smoking process for 120, 240 and 460 min before distillation. To improve insight into the behaviour of ethanol and the partitioning of some volatile compounds, each distillate was collected in fractions (ethanol content from 24 to 59% vol) and analysed for the higher alcohols (2‐butanol, n‐butanol, n‐propanol, isoamyl alcohols, n‐hexanol) ethyl esters (ethyl acetate, ethyl lactate, ethyl caproate, ethyl caprylate, ethyl caprate, ethyl myristate and ethyl laurate) and volatile phenols (guaiacol, methyl guaiacol, ethyl guaiacol, propyl guaiacol, eugenol and isoeugenol). The results obtained showed that the behaviour of ethanol was not regular and the alcohol strength was lower when the smoking process was applied to fermented marc. The volatile phenols highlighted a distillation behaviour characterised by an increase in concentration at the end of the distillation process when ethanol decreased. Long time exposure of the marc to the smoking process resulted in higher reduction of ethanol, higher alcohols and ethyl esters. Instead, the volatile phenols increased with the duration of the smoking process.  相似文献   

14.
Carbohydrate materials that produce lower postprandial blood glucose increase are required for diabetic patients. To develop slowly digestible carbohydrates, the effect of degree of polymerization (DP) of α-1,6 glucan on its digestibility was investigated in vitro and in vivo. We prepared four fractions of α-1,6 glucan composed primarily of DP 3–9, DP 10–30, DP 31–150, and DP 151+ by fractionating a dextran hydrolysate. An in vitro experiment using digestive enzymes showed that the glucose productions of DP 3–9, DP 10–30, DP 31–150, and DP 151+ were 70.3, 53.4, 28.2, and 19.2 % in 2 h, and 92.1, 83.9, 39.6, and 33.3 % in 24 h relative to dextrin, respectively. An in vivo glycemic response showed that the incremental area under the curve (iAUC) of blood glucose levels of α-1,6 glucan with DP 3–9, DP 10–30, DP 31–150, and DP 151+ were 99.5, 84.3, 65.4, and 40.1 % relative to dextrin, respectively. These results indicated that α-1,6 glucan with higher DP had stronger resistance to digestion and produced a smaller blood glucose response. DP 10–30 showed significantly lower maximum blood glucose levels than dextrin; however, no significant difference was observed in iAUC, indicating that DP 10–30 was slowly digestible. In addition, α-1,6 glucan was also produced using an enzymatic reaction with dextrin dextranase (DDase). This produced similar results to DP 10–30. The DDase product can be synthesized from dextrin at low cost. This glucan is expected to be useful as a slowly digestible carbohydrate source.  相似文献   

15.
The cellulose binding domain (CBD) of cellulosome-integrating protein A from Clostridium thermocellum NBRC 103400 was genetically fused to FMN-dependent NADH-azoreductase (AZR) and glucose 1-dehydrogenase (GDH) from Bacillus subtilis. The fusion enzymes, AZR-CBD and CBD-GDH, were expressed in Escherichia coli Rosetta-gami B (DE3). The enzymes were purified from cell-free extracts, and the specific activity of AZR-CBD was 15.1 U/mg and that of CBD-GDH was 22.6 U/mg. AZR-CBD and CBD-GDH bound strongly to 0.5 % swollen cellulose at approximately 95 and 98 % of the initial protein amounts, respectively. After immobilization onto the swollen cellulose, AZR-CBD and CBD-GDH retained their catalytic activity. Both enzymes bound weakly to 0.5 % microcrystalline cellulose, but the addition of a high concentration of microcrystalline cellulose (10 %) improved the binding rate of both enzymes. A reactor for flow injection analysis was filled with microcrystalline cellulose-immobilized AZR-CBD and CBD-GDH. This flow injection analysis system was successfully applied for the determination of glucose, and a linear calibration curve was observed in the range of approximately 0.16–2.5 mM glucose, with a correlation coefficient, r, of 0.998.  相似文献   

16.
17.
Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase Pc Cel6A from the fungus Phanerochaete chrysosporium , and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris . Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of Pc Cel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.  相似文献   

18.
19.
Glycoside hydrolases require carboxyl groups as catalysts for their activity. A retaining xylanase from Streptomyces olivaceoviridis E-86 belonging to glycoside hydrolase family 10 possesses Glu128 and Glu236 that respectively function as acid/base and nucleophile. We previously developed a unique mutant of the retaining xylanase, N127S/E128H, whose deglycosylation is triggered by azide. A crystallographic study reported that the transient formation of a Ser–His catalytic dyad in the reaction cycle possibly reduced the azidolysis reaction. In the present study, we engineered a catalytic dyad with enhanced stability by site-directed mutagenesis and crystallographic study of N127S/E128H. Comparison of the Michaelis complexes of N127S/E128H with pNP-X2 and with xylopentaose showed that Ser127 could form an alternative hydrogen bond with Thr82, which disrupts the formation of the Ser–His catalytic dyad. The introduction of T82A mutation in N127S/E128H produces an enhanced first-order rate constant (6 times that of N127S/E128H). We confirmed the presence of a stable Ser–His hydrogen bond in the Michaelis complex of the triple mutant, which forms the productive tautomer of His128 that acts as an acid catalyst. Because the glycosyl azide is applicable in the bioconjugation of glycans by using click chemistry, the enzyme-assisted production of the glycosyl azide may contribute to the field of glycobiology.  相似文献   

20.
SUMMARY: Volatile components of commercial Montmorency cherry essence boiling above ethanol were extracted from the essence by ether and concentrated by distillation. This concentrate was fractionated by gas chromatography. Individual components were identified using the methods of functional group analysis, gas co-chromatography, infrared analysis and mass spectrometry. The concentrations of the components in the original essence were estimated. The major components identified were n-propyl alcohol, isobutyl alcohol, isoamyl alcohol, and benzaldehyde. Minor components identified include n-butanol, n-hexanol, a hexenol, benzyl alcohol, α-terpineol, furfural, isoprene, myrcene and numerous higher terpenes, methyl benzoate, ethyl benzoate, benzyl acetate, ethyl caprylate, ethyl caprate, n-propyl benzoate, isobutyl benzoate, isoamyl benzoate and di-butyl phthalate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号