共查询到20条相似文献,搜索用时 11 毫秒
1.
Structure and properties of highly oriented polyoxymethylene/multi-walled carbon nanotube composites produced by hot stretching 总被引:1,自引:0,他引:1
Xiaowen ZhaoLin Ye 《Composites Science and Technology》2011,71(10):1367-1372
Highly-oriented polyoxymethylene (POM)/multi-walled carbon nanotube (MWCNT) composites were fabricated through solid hot stretching technology. With the draw ratio as high as 900%, the oriented composites exhibited much improved thermal conductivity and mechanical properties along the stretching direction compared with that of the isotropic samples before drawing. The thermal conductivity of the composite with 11.6 vol.% MWCNTs can reach as high as 1.2 W/m K after drawing. Microstructure observation demonstrated that the POM matrix had an ordered fibrillar bundle structure and MWCNTs in the composite tended to align parallel to the stretching direction. Wide-angle X-ray diffraction results showed that the crystal axis of the POM matrix was preferentially oriented perpendicular to the draw direction, while MWCNTs were preferentially oriented parallel to the draw direction. The strong interaction between the POM matrix and the MWCNTs hindered the orientation movement of molecules of POM, but induced the orientation movement of MWCNTs. 相似文献
2.
Jianwei ZhangDazhi Jiang 《Composites Science and Technology》2011,71(4):466-470
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly. 相似文献
3.
Changru Rong Gang Ma Shuling Zhang Li Song Zheng Chen Guibin Wang P.M. Ajayan 《Composites Science and Technology》2010
Pristine carbon nanotubes (CNTs) and noncovalently functionalized carbon nanotubes (f-CNTs) were used to prepare poly(ether ether ketone) (PEEK) composites (CNTs/PEEK and f-CNTs/PEEK) via melt blending. Noncovalently functionalized multiwalled nanotubes were synthesized using hydrogen-bonding interactions between sulfonic groups of sulfonated poly(ether ether ketone) (SPEEK) and carboxylic groups of nanotubes treated by acid (CNTs–COOH). The effects of these two kinds of nanotubes on the mechanical properties and crystallization behavior of PEEK were investigated. CNTs improved mechanical properties and promoted the crystallization rate of PEEK as a result of heterogeneous nucleation. Better enhancement of mechanical properties appeared in the f-CNTs/PEEK composites, which is ascribed to the good interaction between f-CNTs and PEEK. However, the strong interaction of f-CNTs and PEEK chains decreased the crystallization rate of PEEK for high content of f-CNTs. 相似文献
4.
This study aims to investigate experimentally the effects of aspect ratio (length/diameter ratio) and concentration of multiwalled carbon nanotubes (MWCNTs) on thermal properties of high density polyethylene (HDPE) based composites. The aspect ratios of two types of MWCNT fillers are in the range of 200–400 and 500–3000. Composite samples were prepared by melt mixing up to weight fraction of 19% filler content, followed by a compression molding. Measurements of density, specific heat and thermal diffusivity (by modulated photothermal radiometry, PTR) were performed and effective thermal conductivities ke of nanocomposites were calculated using these values. The results show that the composites containing MWCNTs with higher aspect ratio have higher thermal conductivities than the ones with lower aspect ratio. In terms of conductivity enhancement ke/km − 1, the results indicate that MWCNTs with higher aspect ratio provide three to fourfold larger enhancement than the ones with lower aspect ratio, at low filler concentrations. 相似文献
5.
Sourav Chakraborty Jürgen Pionteck Beate Krause Susanta Banerjee Brigitte Voit 《Composites Science and Technology》2012
Commercial Udel® poly(ether sulfone) (PSU) was filled with three different commercially available multiwalled carbon nanotubes (MWCNTs) by small scale melt mixing. The MWCNTs were as grown NC 7000 and two of its derivatives prepared by ball milling treatment. One of them was unmodified (NC 3150); the other was amino modified (NC 3152). The main difference beside the reactivity was the reduced aspect ratio of NC 3150 and NC 3152 caused by ball milling process. All PSU/MWCNT composites with similar filler content were prepared under fixed processing conditions and comparative analysis of their electrical and mechanical properties were performed and were correlated with their microstructure, characterized by optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A non-uniform MWCNT dispersion was observed in all composites. The MWCNTs were present in form of agglomerates in the size of 10–60 μm whereas the deagglomerated part was homogeneously distributed in the PSU matrix. The differences in the agglomeration states correlate with the variations of properties between different PSU/MWCNT composites. The lowest electrical percolation threshold of 0.25–0.5 wt.% was observed for the shortened non-functionalized MWCNT composites and the highest for amine-modified MWCNT composites (ca. 1.5 wt.%). The tensile behavior of the three composites was only slightly altered with CNT loading as compared to the pure PSU. However, the elongation at break showed a reduction with MWCNT loading and the reduction was least for composite with best MWCNT dispersion. 相似文献
6.
7.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them. 相似文献
8.
Multi-phase composites have been studied by incorporating carbon nanotubes (CNTs) as a secondary reinforcement in an epoxy matrix which was then reinforced with glass fiber mat. Different types of CNTs e.g. amino functionalized carbon nanotubes (ACNT) and pristine carbon nanotubes (PCNT) were homogeneously dispersed in the epoxy matrix and two-ply laminates were fabricated using vacuum-assisted resin infusion molding technique. The issues related to CNT dispersion and interfacial bonding and its affect on the mechanical properties have been studied. An important finding of this study is that PCNT scores over ACNT in composites prepared under certain conditions. This is a very significant finding since PCNT is available at a much lower cost than ACNT. 相似文献
9.
For manufacturing thermally stable electric heating composite films, a sulfonated poly(1,3,4-oxadiazole) (sPOD) was synthesized and it was composited with pristine MWCNT of 0.1–10.0 wt% by an ultrasonicated solution mixing and casting. SEM images revealed that the pristine MWCNTs were dispersed well in the composite matrix via π–π interaction between the MWCNTs and the aromatic rings of sPOD backbone. The electrical resistivity of the composite films decreased considerably from ∼109 Ω cm to ∼100 Ω cm with the increment of the MWCNT content by forming a percolation threshold at ∼0.026 wt%. The composite films with 5.0–10.0 wt% MWCNT contents, which had sufficiently low electrical resistivity of ∼103–100 Ω cm, exhibited excellent electric heating performance by attaining high maximum temperatures as well as electric energy efficiency. Since the dominant thermal decomposition of the composite films took place at ∼500 °C, sPOD/MWCNT composite films with low electrical resistivity could be used for high performance electric heating materials for advanced applications. 相似文献
10.
We found that the thermal conductivity of polymer composites was synergistically improved by the simultaneous incorporation of graphene nanoplatelet (GNP) and multi-walled carbon nanotube (MWCNT) fillers into the polycarbonate matrix. The bulk thermal conductivity of composites with 20 wt% GNP filler was found to reach a maximum value of 1.13 W/m K and this thermal conductivity was synergistically enhanced to reach a maximum value of 1.39 W/m K as the relative proportion of MWCNT content was increased but the relative proportion of GNP content was decreased. The synergistic effect was theoretically estimated based on a modified micromechanics model where the different shapes of the nanofillers in the composite system could be taken into account. The waviness of the incorporated GNP and MWCNT fillers was found to be one of the most important physical factors determining the thermal conductivity of the composites and must be taken into consideration in theoretical calculations. 相似文献
11.
A small quantity of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) were introduced into the poly(vinylidene fluoride) (PVDF)/GNP and PVDF/CNT composites, respectively, to prepare the corresponding ternary PVDF/CNT/GNP and PVDF/GNP/CNT composites. The results demonstrated that adding CNTs into the PVDF/GNP composites greatly promoted the formation of the hybrid network structure of fillers. This was much different from the scenario that adding GNPs into the PVDF/CNT composites. GNPs and CNTs exhibited excellent nucleation effects for the crystallization of PVDF matrix; however, the variation of the PVDF crystallinity was small. Adding CNTs into the PVDF/GNP composites greatly enhanced the electrical conductivity of the PVDF/CNT/GNP composites. This was also different from the scenario of the PVDF/GNP/CNT composites. Furthermore, the PVDF/CNT/GNP composites exhibit higher thermal conductivity and higher synergistic efficiency compared with the PVDF/GNP/CNT composites. The conductive mechanisms and the synergistic effects of the ternary composites were then analyzed. 相似文献
12.
The hybrids of multi-walled carbon nanotube and poly(lactic acid) (MWCNT/PLA) were prepared by a melt-blending method. In order to enhance the compatibility between the PLA and MWCNTs, the surface of the MWCNTs was covalently modified by Jeffamine® polyetheramines by functionalizing MWCNTs with carboxylic groups. Different molecular weights and hydrophilicity of the polyethermaines were grafted onto MWCNTs with the assistance of a dehydrating agent. The results showed that low-molecular-weight Jeffamine® polyetheramine modified MWCNTs can effectively improve the thermal properties of PLA composites. On the other hand, high-molecular-weight and poly(oxyethylene)-segmented polyetheramine could render the modified MWCNTs of well dispersion in PLA, and consequently affecting the improvements of mechanical properties and conductivity of composite materials. With the addition of 3.0 wt% MWCNTs, the increment of E′ of the composite at 40 °C was 79%. For conductivity, the surface resistivity decreased from 1.27 × 1012 Ω/sq for neat PLA to 8.30 × 10−3 Ω/sq for the composites. 相似文献
13.
Peng Guo Xiaohong Chen Xinchun Gao Huaihe Song Heyun Shen 《Composites Science and Technology》2007,67(15-16):3331-3337
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed. 相似文献
14.
A series of composites based on polylactide (PLA), have been prepared by melt-blending with multiwalled carbon nanotubes (MWNT) and Tri(1-hydroxyethyl-3-methylimidazolium chloride) phosphate (IP) functionalized MWNT (MIP). The morphology, thermal stability and burning behavior of the composites were investigated by Field Emission Scanning Electron Microscopy (FESEM), Thermogravimetric Analysis (TGA) and Cone Calorimeter Test (CCT), respectively. Significant improvement in fire retardant performance was observed for the PLA/MIP composite from CCT (reducing both the heat release rate and the total heat release) and TGA (increasing the char residue) compared to PLA/MWNT. SEM and Raman spectroscopy were utilized to explore the surface morphology and chemical structure of the char residues. It revealed that the catalytic charring effect of IP, the physical crosslinking effect of MWNT, and the combined effect of both IP and MWNT (forming continuous and compact char layers) were very efficient in improving the flame retarding properties of PLA/MIP composite. 相似文献
15.
The mechanical and electrical properties of single-walled carbon nanotube (SWCNT) reinforced poly(phenylene sulphide) (PPS) composites prepared by melt-extrusion have been evaluated. The wrapping of SWCNTs in polyetherimide (PEI) and the addition of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles provided an effective method for dispersing the SWCNTs, leading to enhanced properties of the resulting hybrid composites. Mechanical tests demonstrated significant enhancements in stiffness, strength and toughness by the addition of both nanofillers, and the Young’s modulus of the hybrid composites was fairly well predicted by two-phase modelling. The electrical conductivity of PPS improved dramatically at low SWCNT content (0.1-0.5 wt%). At higher concentrations, the replacement of part of the SWCNTs with IF-WS2 maintained the level of conductivity of the composites. Overall, the hybrids possess superior performance than composites reinforced solely with wrapped or non-wrapped SWCNTs, and their properties can be tailored by modifying the SWCNT/IF-WS2 ratio. 相似文献
16.
The anisotropic development of thermal conductivity in polymer composites was evaluated by measuring the isotropic, in-plane and through-plane thermal conductivities of composites containing length-adjusted short and long multi-walled CNTs (MWCNTs). The thermal conductivities of the composites were relatively low irrespective of the MWCNT length due to their high contact resistance and high interfacial resistance to polymer resins, considering the high thermal conductivity of MWCNTs. The isotropic and in-plane thermal conductivities of long-MWCNT-based composites were higher than those of short-MWCNT-based ones and the trend can accurately be calculated using the modified Mori-Tanaka theory. The in-plane thermal conductivity of composites with 2 wt% long MWCNTs was increased to 1.27 W/m·K. The length of MWCNTs in polymer composites is an important physical factor in determining the anisotropic thermal conductivity and must be considered for theoretical simulations. The thermal conductivity of MWCNT polymer composites can be effectively controlled in the processing direction by adjusting the length of the MWCNT filler. 相似文献
17.
Jiawen Xiong Zhen Zheng Wenhui Song Dongsheng Zhou Xinling Wang 《Composites Part A》2008,39(5):904-910
Methylene-bis-ortho-chloroanilline (MOCA), an excellent cross-linker widely used to prepare cured polyurethane (PU) elastomers with high performance, was used to modify a multi-walled carbon nanotube. PU/carbon nanotube (CNT) nanocomposites were prepared by incorporation of the MOCA-grafted CNT into PU matrix. Fourier transform infrared spectra have shown that the modified CNTs have been linked with PU matrix. The microstructure of composites was investigated by Field-Emission Scanning Electron Microscopy. The results of Dynamic Mechanical Thermal Analysis and Differential Scanning Calorimetry have investigated the grafted CNTs as cross-linker in the cured composites. The studies on the thermal and mechanical properties of the composites have indicated that the storage modulus and tensile strength, as well as glass transition temperature and thermal stability are significantly increased with increasing CNT content. 相似文献
18.
Robert SocherBeate Krause Sylvia HermaschRoland Wursche Petra Pötschke 《Composites Science and Technology》2011,71(8):1053-1059
Hybrid filler systems of multiwalled carbon nanotubes (MWCNTs) and carbon black (CB) were incorporated into two types of polyamide 12 (PA12) using small-scale melt mixing in order to identify potential synergistic effects on the interaction of these two electrical conductive fillers. Although no synergistic effects were observed regarding the electrical percolation threshold, at loadings well above the percolation threshold higher volume conductivities were obtained for samples containing both, MWCNT and CB, as compared to single fillers. This effect was more pronounced when using a higher viscous PA12 matrix. The formation of a co-supporting network can be assumed. The combined use of CB and MWCNTs improved the macrodispersion of MWCNT agglomerates, which can be assigned as a synergistic effect. DSC measurements indicated an effect of the nanofiller on crystallisation temperatures of PA12; however this was independent of the kind or amount of the carbon nanofiller. 相似文献
19.
In order to explore the addition effect of fluorinated graphene (FG) on the mechanical and thermal performances of polyimide (PI) matrix, FG sheets are first prepared and employed as the nanofillers to construct PI/FG nanocomposite films. The prepared film is optically transparent at low content of FG and experimental results demonstrate that the addition of FG can effectively enhance the properties of PI matrix. Especially, compared with pure PI matrix, the addition of 0.5 wt% FG in PI can endow 30.4% increase in tensile stress and 115.2% increase in elongation at break. Experimental analyses considering the morphology and microstructure are also conducted, and the results indicate that the improved mechanical properties of the PI/FG nanocomposite films are mainly attributed to the good dispersibility of FG sheets in PI host, and the effective stress transfer between the polymer and the FG. 相似文献
20.
Both silane and multiwall carbon nanotubes (CNTs) were grafted successfully onto carbon fibers (CFs) to enhance the interfacial strength of CFs reinforced methylphenylsilicone resin (MPSR) composites. The microstructure, interfacial properties, impact toughness and heat resistance of CFs before and after modification were investigated. Experimental results revealed that CNTs were grafted uniformly onto CFs using 3-aminopropyltriethoxysilane (APS) as the bridging agent. The wettability and surface energy of the obtained hybrid fiber (CF-APS-CNT) were increased obviously in comparison with those of the untreated-CF. The CF-APS-CNT composites showed simultaneously remarkable enhancement in interlaminar shear strength (ILSS) and impact toughness. Moreover, the interfacial reinforcing and toughening mechanisms were also discussed. In addition, Thermogravimetric analysis and thermal oxygen aging experiments indicated a remarkable improvement in the thermal stability and heat oxidation resistance of composites by the introduction of APS and CNTs. We believe the facile and effective method may provide a novel interface design strategy for developing multifunctional fibers. 相似文献