共查询到20条相似文献,搜索用时 15 毫秒
1.
The paucity of structural defects in carbon nanotube (CNT) with unrivalled mechanical properties has always posed an interest to material scientists for its potential incorporation in soft polymer resins to achieve superior mechanical stability. Present investigation focuses on the assessment of flexural behaviour of glass/epoxy (GE) and multiwalled carbon nanotubes (MWCNT) embedded glass/epoxy (0.3 wt. % of epoxy) (CNT-GE) composites at different in-service environmental temperatures. In-situ 3-point bend tests were performed on GE and CNT-GE composites at −80 °C, −40 °C, room temperature (20 °C), 70 °C and 110 °C temperatures at 1 mm/min crosshead speed. The results revealed that at 110 °C temperature, the flexural strength of GE and CNT-GE composites was significantly decreased by 67% and 81% respectively in comparison to their strength at −80 °C temperature. Similarly, 38% and 77% decrement in modulus was noted for GE and CNT-GE composites respectively. Dynamic mechanical thermal analysis (DMTA) was carried out in the temperature range of −100 °C to 200 °C to correlate the mechanical and thermo-mechanical response of both the material systems. Addition of 0.3 wt. % MWCNT in GE composite resulted in lowering of glass transition temperature (Tg) by 12 °C. Furthermore, to understand various possible deformation and failure mechanisms, the post failure analysis of the fractured specimens, tested at different temperatures, was carried out using scanning electron microscope (SEM). The critical parameters needed during designing composite structures were calculated and modelled using Weibull constitutive model. 相似文献
2.
Multi-phase composites have been studied by incorporating carbon nanotubes (CNTs) as a secondary reinforcement in an epoxy matrix which was then reinforced with glass fiber mat. Different types of CNTs e.g. amino functionalized carbon nanotubes (ACNT) and pristine carbon nanotubes (PCNT) were homogeneously dispersed in the epoxy matrix and two-ply laminates were fabricated using vacuum-assisted resin infusion molding technique. The issues related to CNT dispersion and interfacial bonding and its affect on the mechanical properties have been studied. An important finding of this study is that PCNT scores over ACNT in composites prepared under certain conditions. This is a very significant finding since PCNT is available at a much lower cost than ACNT. 相似文献
3.
Drawing, winding, and pressing techniques were used to produce horizontally aligned carbon nanotube (CNT) sheets from free-standing vertically aligned CNT arrays. The aligned CNT sheets were used to develop aligned CNT/epoxy composites through hot-melt prepreg processing with a vacuum-assisted system. Effects of CNT diameter change on the mechanical properties of aligned CNT sheets and their composites were examined. The reduction of the CNT diameter considerably increased the mechanical properties of the aligned CNT sheets and their composites. The decrease of the CNT diameter along with pressing CNT sheets drastically enhanced the mechanical properties of the CNT sheets and CNT/epoxy composites. Raman spectra measurements showed improvement of the CNT alignment in the pressed CNT/epoxy composites. Research results suggest that aligned CNT/epoxy composites with high strength and stiffness are producible using aligned CNT sheets with smaller-diameter CNTs. 相似文献
4.
A. Godara L. Gorbatikh G. Kalinka A. Warrier O. Rochez L. Mezzo F. Luizi A.W. van Vuure S.V. Lomov I. Verpoest 《Composites Science and Technology》2010
In recent years, carbon nanotubes (CNTs) grown on fibers have attracted a lot of interest as an additional reinforcing component in conventional fiber-reinforced composites to improve the properties of the fiber/matrix interface. Due to harsh growth conditions, the CNT-grafted fibers often exhibit degraded tensile properties. In the current study we explore an alternative approach to deliver CNTs to the fiber surface by dispersing CNTs in the fiber sizing formulation. This route takes advantage of the developed techniques for CNT dispersion in resins and introduces no damage to the fibers. We focus on unidirectional glass fiber/epoxy macro-composites where CNTs are introduced in three ways: (1) in the fiber sizing, (2) in the matrix and (3) in the fiber sizing and matrix simultaneously. Interfacial shear strength (IFSS) is investigated using single-fiber push-out microindentation. The results of the test reveal an increase of IFSS in all three cases. The maximum gain (over 90%) is achieved in the composite where CNTs are introduced solely in the fiber sizing. 相似文献
5.
Peng Guo Xiaohong Chen Xinchun Gao Huaihe Song Heyun Shen 《Composites Science and Technology》2007,67(15-16):3331-3337
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed. 相似文献
6.
Xin WangPhilip D. Bradford Wei LiuHaibo Zhao Yoku InoueJon-Paul Maria Qingwen LiFuh-Gwo Yuan Yuntian Zhu 《Composites Science and Technology》2011,71(14):1677-1683
The excellent mechanical properties of carbon nanotubes (CNTs) make them the ideal reinforcements for high performance composites. The misalignment and waviness of CNTs within composites are two major issues that limit the reinforcing efficiency. We report an effective method to increase the strength and stiffness of high volume fraction, aligned CNT composites by reducing CNT waviness using a drawing and stretching approach. Stretching the composites after fabrication improved the ultimate strength by 50%, 150%, and 190% corresponding to stretch ratios of 2%, 4% and 7%, respectively. Improvement of the electrical conductivities exhibited a similar trend. These results demonstrate the importance of straightening and aligning CNTs in improving the composite strength and electrical conductivity. 相似文献
7.
Mechanical and thermal behavior of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites 总被引:1,自引:0,他引:1
Mechanical and thermal properties of non-crimp glass fiber reinforced clay/epoxy nanocomposites were investigated. Clay/epoxy nanocomposite systems were prepared to use as the matrix material for composite laminates. X-ray diffraction results obtained from natural and modified clays indicated that intergallery spacing of the layered clay increases with surface treatment. Tensile tests indicated that clay loading has minor effect on the tensile properties. Flexural properties of laminates were improved by clay addition due to the improved interface between glass fibers and epoxy. Differential scanning calorimetry (DSC) results showed that the modified clay particles affected the glass transition temperatures (Tg) of the nanocomposites. Incorporation of surface treated clay particles increased the dynamic mechanical properties of nanocomposite laminates. It was found that the flame resistance of composites was improved significantly by clay addition into the epoxy matrix. 相似文献
8.
Yasuhide Shindo Masaya MiuraTomo Takeda Nozomi SaitoFumio Narita 《Composites Science and Technology》2011,71(5):647-652
This paper investigates the fatigue delamination growth behavior in woven glass fiber reinforced polymer (GFRP) composite laminates under mixed-mode I/II conditions at cryogenic temperatures. Fatigue delamination tests were performed with the mixed-mode bending (MMB) test apparatus at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K), in order to obtain the delamination growth rate as a function of the range of the energy release rate, and the dependence of the delamination growth behavior on the temperature and the mixed-mode ratio of mode I and mode II was examined. The energy release rate was evaluated using three-dimensional finite element analysis. The fractographic examinations by scanning electron microscopy (SEM) were also carried out to assess the mixed-mode fatigue delamination growth mechanisms in the woven GFRP laminates at cryogenic temperatures. 相似文献
9.
M. LahelinM. Annala A. NykänenJ. Ruokolainen J. Seppälä 《Composites Science and Technology》2011,71(6):900-907
Carbon nanotubes (CNTs) were incorporated into polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrices via in situ emulsion and emulsion/suspension polymerization methods. The polymerizations were carried out using various initiators, surfactants, and carbon nanotubes to determine their influence on polymerization and on the properties of the composites. The loading of CNTs in the composites varied from 0 to 15 wt.%, depending on the CNTs used. Morphology and dispersion of the CNTs were analyzed by transmission and scanning electron microscopy techniques. The dispersion of multi-walled carbon nanotubes (MWCNT) in the composites was excellent, even at high CNT loading. The mechanical properties, and electrical and thermal conductivities, of the composites were also analyzed. Both electrical and thermal conductivities were improved. 相似文献
10.
A study on the flexural properties of bidirectional hybrid epoxy composites reinforced by E glass and T700S carbon fibres in inter-ply configurations is presented in this paper. Test specimens are made by hand lay-up and their flexural properties are obtained by three point bend test in accordance with ASTM D790-07. For comparison, the flexural behaviour is also modelled numerically using finite element analysis (FEA), and analytically using the Classic Lamination Theory (CLT). It is shown from the results that in general, good agreement is found between the experimental data and the model predictions. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy laminas. No significant hybrid effects for the flexural strength are found from the experiments. However, simulation studies show that hybridisation can potentially improve the flexural strength. 相似文献
11.
This paper investigates the through-thickness tensile behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. Tensile tests were carried out with cross specimens at room temperature and liquid nitrogen temperature (77 K), and the through-thickness elastic and strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical and laser scanning microscopy observations. A three-dimensional finite element analysis was performed to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. It is found that the cross specimen is suitable for the cryogenic through-thickness tensile characterization of laminated composite materials. In addition, the through-thickness Young's modulus of the woven GFRP composite laminates is dominated by the properties of the matrix polymer in the given temperature, while the tensile strength is characterized by both, the fiber to matrix interface energy and the cohesion energy of the matrix polymer. 相似文献
12.
Carbon fiber reinforced polymer (CFRP) composite sandwich panels with hybrid foam filled CFRP pyramidal lattice cores have been assembled from linear carbon fiber braids and Divinycell H250 polymer foam trapezoids. These have been stitched to 3D woven carbon fiber face sheets and infused with an epoxy resin using a vacuum assisted resin transfer molding process. Sandwich panels with carbon fiber composite truss volumes of 1.5–17.5% of the core volume have been fabricated, and the through-thickness compressive strength and modulus measured, and compared with micromechanical models that establish the relationships between the mechanical properties of the core, its topology and the mechanical properties of the truss and foam. The through thickness modulus and strength of the hybrid cores is found to increase with increasing truss core volume fraction. However, the lattice strength saturates at high CFRP truss volume fraction as the proportion of the truss material contained in the nodes increases. The use of linear carbon fiber braids is shown to facilitate the simpler fabrication of hybrid CFRP structures compared to previously described approaches. Their specific strength, moduli and energy absorption is found to be comparable to those made by alternative approaches. 相似文献
13.
Daniel C. Davis Justin W. WilkersonJiang Zhu Viktor G. Hadjiev 《Composites Science and Technology》2011,71(8):1089-1097
Carbon fiber reinforced epoxy composite laminates are studied for improvements in quasi static strength and stiffness and tension-tension fatigue cycling at stress-ratio (R-ratio) = +0.1 through strategically incorporating amine functionalized single wall carbon nanotubes (a-SWCNTs) at the fiber/fabric-matrix interfaces over the laminate cross-section. In a comparison to composite laminate material without carbon nanotube reinforcements there are modest improvements in the mechanical properties of strength and stiffness; but, a potentially significant increase is demonstrated for the long-term fatigue life of these functionalized nanotube reinforced composite materials. These results are compared with previous research on the cyclic life of this carbon fiber epoxy composite laminate system reinforced similarly with side wall fluorine functionalized industrial grade carbon nanotubes. Optical and scanning electron microscopy and Raman spectrometry are used to confirm the effectiveness of this strategy for the improvements in strength, stiffness and fatigue life of composite laminate materials using functionalized carbon nanotubes. 相似文献
14.
To successfully reduce a vehicle's weight by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the structure. In this study, we investigated numerical and experimental methods for determining the ply angles and wire diameters of carbon fiber/epoxy composite coil springs to attain a spring rate equal to that of an equivalent steel component. First, the shear modulus ratio for two materials was calculated as a function of the ply angles and compared with the experimental results. Then, by using the equation of the spring rate with respect to the shear modulus and design variables, normalized spring rates were obtained for specific ply angles and wire diameters. Finally, a finite element model for an optimal composite coil spring was constructed and analyzed to obtain the static spring rate, which was then compared with the experimental results. 相似文献
15.
Jianwei ZhangDazhi Jiang 《Composites Science and Technology》2011,71(4):466-470
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly. 相似文献
16.
In order to optimize carbon nanotube (CNT) dispersion state in fiber/epoxy composite, a novel kind of CNT organization form of continuous networks was designed. The present work mainly discussed the feasibility of preparing continuous CNT networks in composite: Fiber fabric was immersed into CNT aqueous solution (containing dispersant) followed by freeze drying and pyrolysis process, prior to epoxy infusion. The morphologies of fabric with CNTs were observed by Scanning Electron Microscope. The relationship between CNT networks and flowing epoxy resin was studied. Properties of composite, including out-of-plane electrical conductivity and interlaminar shear strength (ILSS), were measured. The results demonstrated that continuous and porous CNT networks formed by entangled CNTs could be assembled in fiber fabric. Most part of them were preserved in composite due to the robustness of network structures. The preserved CNT networks significantly improved out-of-plane electrical conductivity, and also have an effect on ILSS value. 相似文献
17.
Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication 总被引:3,自引:0,他引:3
M. L. Shofner F. J. Rodríguez-Macías R. Vaidyanathan E. V. Barrera 《Composites Part A》2003,34(12):1207-1217
Single wall carbon nanotubes (SWNTs) and vapor grown carbon fibers (VGCFs) were compounded with poly(acrylonitrile-co-butadiene-co-styrene) (ABS) to create composite materials for use with Extrusion Freeform Fabrication (EFF). The composite materials possessed homogeneously dispersed fibers that were oriented with EFF processing. The VGCF and SWNT reinforced materials processed by EFF displayed improved tensile modulus compared to similarly processed ABS and composite material with isotropic fiber orientation, and the SWNT reinforced material displayed the highest properties, strength and modulus, of the materials studied. The materials containing oriented VGCFs and SWNTs showed modulus improvements of 44 and 93%, respectively. 相似文献
18.
In this work, carbon composite bipolar plates consisting of synthetic graphite and milled carbon fibers as a conductive filler and epoxy as a polymer matrix developed using compression molding is described. The highest electrical conductivity obtained from the described material is 69.8 S/cm for the in-plane conductivity and 50.34 S/cm for the through-plane conductivity for the composite containing 2 wt.% carbon fiber (CF) with 80 wt.% filler loading. This value is 30% greater than the electrical conductivity of a typical graphite/epoxy composite with 80 wt.% filler loading, which is 53 S/cm for the in-plane conductivity and 40 S/cm for the through-plane conductivity. The flexural strength is increased to 36.28 MPa compared to a single filler system, which is approximately 25.22 MPa. This study also found that the General Effective Media (GEM) model was able to predict the in-plane and through-plane electrical conductivities for single filler and multiple filler composites. 相似文献
19.
High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers 总被引:1,自引:0,他引:1
Dan ChenRuiyu Wang Weng Weei TjiuTianxi Liu 《Composites Science and Technology》2011,71(13):1556-1562
Highly aligned polyimide (PI) and PI nanocomposite fibers containing carbon nanotubes (CNTs) were produced by electrospinning. Scanning electron microscopy showed the electrospun nanofibers were uniform and almost free of defects. Transmission electron microscopy indicated that the CNTs were finely dispersed and highly oriented along the CNT/PI nanofiber axis at a relatively low concentration. The as-prepared well-aligned electrospun nanofibers were then directly used as homogeneity reinforcement to enhance the tensile strength and toughness of PI films. The neat PI nanofiber reinforced PI films showed good transparency, decreased bulk density and significantly improved mechanical properties. Compared with neat PI film prepared by solution casting, the tensile strength and elongation at break for the PI film reinforced with 2 wt.% CNT/PI nanofibers were remarkably increased by 138% and 104%, respectively. The significant increases in the overall mechanical properties of the nanofibers reinforced polyimide films can be ascribed to good compatibility between the electrospun nanofibers and the matrix as well as high nanofiber orientation in the matrix. Our study demonstrates a good example for fabricating high performance and high toughness polyimide nanocomposites by using this facile homogeneity self-reinforcement method. 相似文献
20.
This study addresses the effect of basalt fibre hybridization on the damage tolerance of carbon/epoxy laminates subjected to laser shock wave tests. Interply hybrid specimens with two different stacking sequences (sandwich-like and intercalated) were tested at different laser intensities and residual post-shock properties of the different configurations have been characterized by quasi-static three point bending tests monitored by acoustic emission. Results indicate that the best compromise in terms of both quasi-static properties (2% reduction in flexural strength compared to all carbon laminates) and damage tolerance appears to be the sandwich-like structure with basalt fibre skins. In particular, this configuration exhibited the highest damage tolerance among the hybrids, with a percent decrease in flexural strength of about 5% compared to 15% in the case of all carbon laminates. Damage induced by laser shock testing in carbon-basalt woven fabric/epoxy composites is mainly inter-ply delamination. This study also highlights the tougher behaviour of basalt plies in response to a sudden application of load compared to carbon layers with a favourable hybridization effect. 相似文献