首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
燃料芯块侧偏状态下的燃料棒温度分布关系到反应堆燃料设计和安全运行。本文基于燃料棒的稳态扩散方程的一般形式,通过数值计算分析了芯块侧偏对燃料棒传热和温度分布的影响。结果表明:当燃料芯块侧偏时,芯块最高温度的位置向芯块侧偏的反方向偏移且最高温度下降,偏心率越大,最高温度的位置偏移程度越大,温降也越大。当偏心率e为0.5和0.8时,芯块最高温度分别下降1.3%和4.1%。而燃料棒包壳外壁面温度分布不均匀且最高温度随着偏心率的增大而升高,当偏心率e=0.8时,燃料棒包壳外壁面的最高温度为350℃,达到燃料棒的临界工作温度。  相似文献   

2.
《核动力工程》2017,(6):185-188
UN燃料具有高热导率和高铀密度等优点,有利于改善芯块传热能力和提高铀装量。基于目前国内外试验所获得的UN燃料物性数据和辐照行为模型,对FUPAC程序进行了二次开发,并对UN燃料应用于压水堆正常运行工况下的燃料性能进行分析。结果表明:压水堆正常运行工况下,UN燃料在芯块温度、裂变气体释放、燃料棒内压、包壳应变等方面具备良好性能。  相似文献   

3.
事故容错燃料(ATF)是通过提高燃料材料热物性或包壳材料抗高温氧化性能来加强核燃料的事故容错能力,从而使核燃料能长期忍受严重事故。使用二次开发适用于ATF的RELAP5程序,对UO2-FeCrAl、FCM-FeCrAl这两种ATF和传统核燃料UO2-Zir-4进行大破口失水事故安全分析。对比事故分析结果可知:相较于传统UO2芯块,稳态运行工况下,热导率高的FCM芯块具有更低的燃料中心温度和更小的燃料径向温度梯度,同时在瞬态事故工况下,FCM芯块具有更低的瞬态初始温度和更小的燃料温度增长速率。相较于传统Zir-4包壳,在瞬态事故工况下,FeCrAl的包壳峰值温度更小,达到的时间更晚,同时由于FeCrAl包壳具有良好的抗高温氧化性能,事故过程中产生的氢气质量更小。  相似文献   

4.
压水堆二类设计基准工况(DBC-2)的现有事故分析方法中暂未直接考虑燃料污垢的影响,为明确燃料棒表面污垢对DBC-2事故瞬态的影响,本研究针对DBC-2事故基于燃料污垢的作用机理进行了工况识别和关键设计输入分析,并开展了污垢作用下的热工水力响应分析和安全评价。研究结果表明,基于目前的保守分析方法,在DNB分析方面,燃料污垢对二类事故分析的影响可被原分析所包络;在燃料温度分析方面,由于燃料污垢会影响芯块的传热能力,因此事故瞬态中的燃料芯块峰值温度上升。本研究结果为进一步完善DBC-2事故分析方法提供了理论和数据支撑。  相似文献   

5.
反应堆冷却剂丧失事故(LOCA)中燃料棒会经历几次比较明显的温升过程,当温升达到一定程度时,会发生燃料棒肿胀破裂现象。燃料棒的肿胀破裂会使得燃料棒内外层均被氧化,氧化膜厚度增加会加剧锆-水反应,从而影响LOCA事故进程。本研究使用满足美国联邦法规10 CFR 50.46附录K要求的系统分析程序ARSAC-K,以自主化三代核电厂作为分析对象,选取4种功率分布形式研究燃料棒肿胀破裂行为对LOCA事故进程的影响,结果表明:破裂时刻包壳附近会出现一段时间明显的降温过程,该过程持续大约20~30 s,随后燃料棒温度继续上升直至达到包壳峰值温度(PCT)。   相似文献   

6.
当反应堆发生落棒事故时,燃料芯块与包壳的相互作用瞬间增强,易造成燃料棒破损,从而影响核电站的正常运行.本文介绍了反应堆Ⅱ类瞬态下燃料棒芯块与包壳相互作用的机理和定量分析方法,并针对大亚湾核电站18个月换料的燃料管理方案进行了发生落棒事故时的PCI热力学评价.初步的研究结果表明:如果在自然循环长度和延伸燃耗运行期内发生落棒事故,对于基负荷运行和基负荷一次调频运行,均有PCI的应力裕量,不会造成燃料棒破损.  相似文献   

7.
为分析卡轴工况下事故容错燃料(ATF)对反应堆安全的潜在影响,以中国改进型三环路压水堆(CPR1000)为参考电站,基于系统分析程序NUSOL-SYS进行了二次开发,研究了不同ATF组合在卡轴工况下的表现,并对ATF包壳表面特性变化可能引起的换热系数和临界热流密度(CHF)变化开展了敏感性分析。分析结果表明,在卡轴工况下,ATF包壳表面特性变化导致的换热系数和CHF变化会对芯块最高温度和包壳峰值温度(PCT)产生较大影响,热导率大的ATF芯块能极大地降低芯块温度,比热容大的ATF材料能降低PCT。  相似文献   

8.
事故容错燃料(ATF)是通过提高燃料材料热物性或包壳材料抗高温氧化性能来加强核燃料的事故容错能力,从而使核燃料能长期忍受严重事故。使用二次开发适用于ATF的RELAP5程序,对UO_2-FeCrAl、FCM-FeCrAl这两种ATF和传统核燃料UO_2-Zir-4进行大破口失水事故安全分析。对比事故分析结果可知:相较于传统UO_2芯块,稳态运行工况下,热导率高的FCM芯块具有更低的燃料中心温度和更小的燃料径向温度梯度,同时在瞬态事故工况下,FCM芯块具有更低的瞬态初始温度和更小的燃料温度增长速率。相较于传统Zir-4包壳,在瞬态事故工况下,FeCrAl的包壳峰值温度更小,达到的时间更晚,同时由于FeCrAl包壳具有良好的抗高温氧化性能,事故过程中产生的氢气质量更小。  相似文献   

9.
在高燃耗情况下,燃料芯块的热导率随燃耗降低,该现象被称之为热导率降级(TCD)现象。TCD现象影响失水事故(LOCA)前稳态工况的燃料平均温度和燃料储能,进而影响大破口LOCA过程中的包壳峰值温度(PCT)。本研究采用大破口LOCA分析程序WCOBRA/TRAC对CAP1000冷段双端剪切断裂事故进行了不同燃耗的敏感性分析,并获得了不同工况下的PCT。分析中采用美国核燃料研究所(NFI)修正的TCD模型对降级后的燃料热导率进行模拟,同时考虑了燃耗大于30GW·d/tU后FQ和FΔh峰值因子的降低。敏感性分析表明,考虑TCD和峰值因子降低的影响,PCT极限工况不再出现在低燃耗区间,而出现在燃耗为29GW·d/tU附近。与其他燃耗水平相比,该燃耗点的PCT第1峰值和第2峰值均处于最高水平。本研究结果可为高燃耗情况下非能动电厂大破口LOCA的分析评估提供参考。  相似文献   

10.
污垢材料在堆芯中迁移和沉积,在包壳表面附着有可能引起传热恶化甚至出现燃料棒局部熔化现象。国内自主开发的压水堆燃料棒分析程序BIRCH暂未考虑潜热,保守假定芯块温度超过熔点3 K完全熔化,导致计算得到的芯块熔化份额非常接近放射物质释放超标验收准则,且存在陡边效应。为解决程序计算过于保守问题,本文采用固定网格等效热容法开发了燃料棒熔化相变导热模型。相比于焓方法,等效热容法仅需对热容进行特殊处理,对整体程序代码改动较小。但传统等效热容法在跨越相变区时易出现数值不稳定性问题,导致计算结果出错。本文首先对等效热容法数值不稳定性产生的原因进行分析,同时基于能量守恒原则建立预测-修正相变求解算法,改进现有等效热容法,并采用不同边界条件解析解、Stefan精确解和焓方法数值解对改进等效热容法进行验证。计算分析结果表明预测-修正相变算法可提升传统等效热容法计算稳定性,且与Stefan精确解数值误差在5%以内,将其应用到污垢传热恶化事故中可提升现有计算结果安全分析裕量。  相似文献   

11.
在自主研发的事故分析程序SCTRAN的基础上,开发并验证了二维导热模型和辐射换热模型,并将改进后的SCTRAN应用于加拿大压力管式超临界水堆在失水事故(LOCA)叠加丧失紧急堆芯冷却系统(LOECC)事故中的堆芯安全评估,并对燃料棒到慢化剂之间的传热效率以及关键的影响因素进行了评估。计算结果表明,在LOCA叠加LOECC工况下,燃料棒到燃料通道的辐射换热和燃料棒到蒸汽的自然对流换热能够有效导出反应堆的衰变余热,最高功率的燃料组件内、外圈燃料棒的最高包壳温度分别为1278℃和1192℃,均低于不锈钢包壳的熔化温度,因此整个事故过程中不会发生堆芯熔化。   相似文献   

12.
Jun  Hwan  Kim  Myoung  Ho  Lee  Byoung  Kwon  Choi  李大鹏 《国外核动力》2005,26(4):60-64
1前言 在反应堆假想设计事故中,保持燃料的完整性与在正常运行中一样重要。失水事故(LOCA)被认为是轻水堆(LWR)设计中最重要的潜在设计基准事故。当LOCA发生时,燃料组件温度上升,包壳经历由水和蒸汽混合物与包壳材料相互作用引起的氧化过程。经过一个时间的延迟,应急堆芯冷却系统投入,注入水以冷却堆芯,这样就不可避免地伴随有包壳发生热收缩。当变脆的包壳不再能承受内在应力时,包壳将会发生破裂,这将导致阻碍裂变产物释放的屏障丧失。为维持假想LOCA工况下的燃料完整性,  相似文献   

13.
张毅  季松涛 《原子能科学技术》2016,50(11):1967-1971
环形燃料是一种采用双层包壳和环形芯块内外冷却的新型压水堆燃料,与传统棒状燃料相比,双包壳结构有效增加了燃料传热面积和减薄了芯块厚度,使其在事故工况下具有更好的安全性能。以秦山二期核电站作为参考电站,建立了装载环形燃料的核电站计算模型,研究在卡轴事故和弹棒事故下采用环形燃料的核电站的响应,并与相应工况下棒状燃料堆芯的计算结果比较。结果表明,与棒状燃料相比,核电站在采用环形燃料后安全裕度有明显的提高。  相似文献   

14.
中国铅基研究实验堆(CLEAR-Ⅰ)被确定为中国科学院加速器驱动次临界系统(ADS)专项的主选堆型。燃料元件是铅基反应堆的核心部件之一,因此需确保燃料元件的芯块中心温度和包壳最高温度符合设计准则的要求。本文利用有限元程序ANSYS对燃料元件活性区在正常运行工况和失流事故下的温度场进行了数值模拟与分析。正常运行工况下的模拟结果表明,芯块中心温度远低于UO2的熔化温度限值,包壳最高温度低于材料的使用温度限值,满足设计准则中关于上限使用温度的要求。失流事故下的模拟结果表明,失流事故发生后,芯块中心温度和包壳最高温度都会明显上升。当冷却剂流速降低到0.1m/s时,包壳最高温度将超过正常使用温度;紧急停堆滞后时间超过17.5s时,包壳的最高温度将超过事故温度限值。以上分析结果可作为燃料元件安全评审工作的基础。  相似文献   

15.
反应堆系统发生瞬态工况时,冷却剂温度的瞬间大幅度变化会对燃料元件包壳结构完整性造成冲击,危及反应堆安全。本文以某压水堆3×3燃料组件为对象,采用流固热耦合方法对冷水事故下燃料组件的流动换热特性和燃料元件包壳温度、变形及应力进行了三维精细化模拟。结果表明:定位格架能够增强燃料棒表面的对流换热强度;包壳变形时向与刚凸接触的一侧折弯,向与弹簧接触的一侧凸起;包壳与定位格架接触部位的温度和最大等效应力随事故时间不断增大,且最大等效应力超过了包壳材料的屈服强度,将发生强度失效,影响其结构完整性。本文研究可为反应堆燃料元件包壳瞬态工况下的完整性评价提供借鉴。   相似文献   

16.
为验证基于三维有限元分析平台建立的三维燃料棒精细化模拟软件FUPAC3D在分析评价压水堆燃料棒辐照-热-力耦合行为方面的能力和精度,本文给出了三维FUPAC3D软件采用的热学模型、燃料棒力学模型、裂变气体释放模型以及腐蚀模型,以华龙一号典型燃料棒参数和运行工况作为输入参数,分别使用三维FUPAC3D软件和已工程化应用的1.5维FUPAC软件进行建模分析,并针对2种软件在芯块和包壳温度、包壳应力与应变、芯块与包壳间间隙宽度的计算结果进行对比研究。研究结果表明,FUPAC3D软件与FUPAC软件具有相当的精度,FUPAC3D软件具备压水堆燃料棒辐照-热-力耦合行为的精细化模拟能力。   相似文献   

17.
在UO_2芯块中添加不同份额的SiC成分,并在M5锆合金包壳外增加不同厚度的SiC涂层结构组合成耐事故燃料元件,并建立混合芯块-锆合金包壳-涂层间热传导模型。计算并调整UO_2混合芯块、SiC涂层热物性参数,以秦山第二核电厂1号和2号机组长循环燃料管理方案为背景,对比分析UO_2混合芯块不同添加成分比例,以及M5锆合金外涂层不同厚度对于燃料棒热性及裂变气体释放结果的敏感性影响。计算结果显示耐事故燃料在瞬态工况下能更有效地降低燃料芯块中心温度。  相似文献   

18.
由于控制棒抽出引起堆芯内反应性失控增加,从而导致核功率剧增的事故定义为一组控制棒组件抽出事故。这种瞬态可能是反应堆控制系统或棒控系统失灵引起的。多普勒负反应性反馈效应能在保护动作延迟的时间内将功率限制在可接受的水平。该事故中,燃料棒表面可能发生偏离泡核沸腾(departure from nucleate boiling,简称DNB),导致燃料元件包壳烧毁;燃料芯块也可能发生熔化,对包壳产生不利影响。文章对岭澳混合堆芯和提高富集度论证次临界或低功率启动工况下提棒事故进行了分析。分析结果表明,事故瞬态中不会发生燃料芯块熔化或燃料元件包壳烧毁,可以保证燃料元件的完整性,燃料设计满足限制准则。  相似文献   

19.
为确定严重事故条件下燃料棒包壳温度达到金属锆的熔点后包壳氧化层的失效时间、再定位熔融物的成分以及氧化层失效对堆芯熔化进程的影响,本文基于熔融锆同时溶解UO_2和ZrO_2动力学模型及燃料棒包壳水侧氧化层的受力分析建立了氧化层在熔融锆中溶解失效的准则。以FPT-0实验结果验证后发现该失效准则可以较准确地预测包壳氧化层的溶解失效。为增加该准则在严重事故计算程序中的适用性,在燃料棒设计结构一定的条件下,进一步将该准则量化为温度的函数,分析表明包壳氧化程度和燃料棒温度上升速率是影响包壳氧化层失效温度的主要因素。利用该失效准则可以同时获得包壳氧化层失效后再定位的熔融物的质量及成分含量。  相似文献   

20.
《核动力工程》2017,(6):180-184
在反应堆运行过程中燃料棒具有复杂的堆内行为,准确可靠的堆内燃料行为预测对于反应堆安全计算、燃料设计需求及燃料性能评估都是所必须的。本研究考虑了UO2芯块与锆合金包壳的相关热效应与辐照效应,并考虑间隙气体热传导、辐射换热、接触热传导的影响;分别编制用户自定义子程序,将燃料棒材料的辐照效应、热效应以及间隙换热等引入商用有限元分析软件ABAQUS,建立了燃料棒辐照-热-力耦合行为的精细化数值模拟方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号