首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersibility of graphene sheets in polymer matrices and interfacial interaction are challenging for producing graphene-based high performance polymer nanocomposites. In this study, three kinds nanofillers; pristine graphene nanoplatelets (GNPs), graphene oxide (GO), and functionalized graphene sheet (FGS) were used to prepare polyurethane (PU) composite by in-situ polymerization. To evaluate the efficacy of functional groups on the graphene sheets, PU reinforced with GNPs, GO, and FGS were compared through tensile testing and dynamic mechanical thermal analysis. The Young's moduli of 2 wt% GO and FGS based PU nanocomposites were found significantly higher than that of same amount of GNPs loading as an evidence of the effect of functional groups on graphene sheets for the mechanical reinforcement. The strong interaction of FGS with PU was responsible to exhibit notably high modulus (25.8 MPa) of 2 wt% FGS/PU composite than the same amount of GNPs and GO loading even at elevated temperature (100 °C).  相似文献   

2.
Herein, oxidation, polyvinyl pyrrolidone (PVP) coating and reduction are used to modify the surface of graphene in thermoplastic polyurethane (TPU)/graphene nanocomposites. It is demonstrated that graphene could be easily dispersed in TPU with PVP absorbed on reduced graphene oxide (RGO) as stabilizer during reduction. In the stress–strain curves for these composites containing GO, PVP coated GO (GO/PVP) and reduced GO/PVP (RGO/PVP) as filler, PVP coating and reduction can largely enhance the stress in low modulus region. It is thought to largely related with enhanced interfacial interaction between filler and matrix and healing of graphene structure during reduction. Consequently, the modulus of TPU/GO/PVP and TPU/RGO/PVP is significantly increased. Meanwhile, an electrical percolation threshold of 0.35 wt.% is obtained for TPU/RGO/PVP. Comparing with the results in literature, the filler surface modification used in this study has created nanocomposites with a good balance between electrical conductivity and mechanical properties.  相似文献   

3.
Polyurethane (PU) nanocomposite films containing highly-aligned graphene sheets are produced. Aqueous dispersion of ultralarge-size graphene oxide (GO) is in situ reduced in waterborne polyurethane, resulting in fine dispersion and high degree of orientation of graphene sheets, especially at high graphene contents. The PU/reduced GO nanocomposites present remarkable 21- and 9-fold increases in tensile modulus and strength, respectively, with 3 wt.% graphene content. The agreement between the experiments and theoretical predictions for tensile modulus proves that the graphene sheets are indeed dispersed individually on the molecular scale and oriented in the polymer matrix to form a layered structure. The moisture permeability of the nanocomposites presents a systematic decrease with increasing graphene content, clearly indicating the impermeable graphene sheets acting as moisture barrier. The synergy arising from the very high aspect ratio and horizontal alignment of the graphene sheets is responsible for this finding.  相似文献   

4.
In this work, the effects of as-produced GO and silane functionalized GO (silane-f-GO) loading and silane functionalization on the mechanical properties of epoxy composites are investigated and compared. Such silane functionalization containing epoxy ended-groups is found to effectively improve the compatibility between the silane-f-GO and the epoxy matrix. Increased storage modulus, glass transition temperature, thermal stability, tensile and flexural properties and fracture toughness of epoxy composites filled with the silane-f-GO sheets are observed compared with those of the neat epoxy and GO/epoxy composites. These findings confirm the improved dispersion and interfacial interaction in the composites arising from covalent bonds between the silane-f-GO and the epoxy matrix. Moreover, several possible fracture mechanisms, i.e. crack pinning/deflection, crack bridging, and matrix plastic deformation initiated by the debonding/delamination of GO sheets, were identified and evaluated.  相似文献   

5.
This communication reported the substantial improvement in the mechanical and thermal properties of a polyurethane (PU) resulting from the incorporation of well-dispersed graphene oxide (GO). The stress transfer benefited from the covalent interface formed between the PU and GO. The Young’s modulus of the PU was improved by ∼7 times with the incorporation of 4 wt% GO, and the improvement of ∼50% in toughness was achieved at 1 wt% loading of GO without losing elasticity. Significant improvements were also demonstrated in the hardness and scratch resistance measured by nano-indentation. Thermogravimetric analysis revealed that the decomposition temperature was increased by ∼50 °C with the addition of 4 wt% GO.  相似文献   

6.
以功能化氧化石墨烯(GO)-埃洛石纳米管(HNTs)杂化材料(GO@HNTs)为纳米填料,以聚丙烯(PP)为基体,通过熔融共混法制备了不同GO@HNTs 含量的GO@HNTs/PP纳米复合材材料,并对所得杂化填料和PP纳米复合材料的结构与性能进行系统研究。研究结果表明,功能化GO与HNTs之间存在化学相互作用,二者之间形成的“屏障效应”抑制了彼此在PP基体中的团聚。仅添加0.5%GO@HNTs杂化纳米填料后,PP复合材料的拉伸强度和冲击强度分别较纯PP提高了17.5%和80.4%,与单独添加相同含量的GO或HNTs所得复合材料的力学性能相比,GO@HNTs杂化纳米填料对PP基体具有明显的协同增强增韧改性作用。与纯PP相比,GO@HNTs/PP试样表现出更高的储能模量、损耗模量和玻璃化转变峰值。由于GO@HNTs的“异相成核效应”和“物理热阻效应”,有效提高了PP纳米复合材料的结晶温度、熔融温度、结晶度和耐热分解温度。  相似文献   

7.
Polyamide-6/graphite oxide (PA6/GO) nanocomposites were synthesized using delamination/absorption method. The morphologies of the composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Both XRD and TEM showed that the GO sheets were completely exfoliated and distributed uniformly in PA6 matrix. Differential scanning calorimetry results revealed that the crystallization temperatures of the composites increased compared to that of pristine PA6, which was due to the heterogeneous nucleating effect of GO. However, the half-time of crystallization of the composites were evidently longer than that of pristine PA6, indicating an apparent decrease in the crystallization rate when GO was loaded into the polymer matrix. This was due to the constraining effect of layered GO on PA6 chains. The temperature of maximum decomposition rate was increased by 53 °C only by adding 5 wt% GO, and the maximum decomposition rate of the nanocomposites reduced greatly. The storage modulus (G′) and loss modulus (G″) curves shifted to higher modulus upon addition of 1–5 wt% of GO. With increasing GO loading, the shear viscosity of the nanocomposites gradually increased compared with pure PA6.  相似文献   

8.
Graphene and its derivatives have attracted great research interest for their potential applications in electronics, energy, materials and biomedical areas. When incorporated appropriately, these atomically thin carbon sheets are expected to improve physical properties of host polymers at extremely small loading. Herein, we report a novel two-step method for the preparation of PLLA/Hap/graphene oxide nanocomposites with augmented mechanical properties when compared to PLLA/Hap and neat PLLA. The presence of graphene oxide (GO) had a positive effect on the dispersion of hydroxyapatite particles on the polymeric matrix contributing for a good homogeneity of the final nanocomposite. PLLA nanocomposites prepared with 30% (w/w) of Hap and 1% (w/w) of GO showed the highest hardness and storage modulus values indicating an efficient load transfer between the fillers and the PLLA matrix. These materials may find interesting biomedical applications as for example bone screws. The following step on the study of these materials will be in vitro tests to access the biocompatibility of these new nanocomposites.  相似文献   

9.
比较了气相、沉淀和稻壳SiO2的物理性质,并利用上述3种SiO2与聚氨酯(PU)复合,考察了SiO2含量(1wt%,3wt%,5wt%)和种类对SiO2/PU复合材料的拉伸性能和吸水性的影响。结果表明:3种SiO2均能够提高SiO2/PU复合材料的力学性质,复合材料的拉伸强度、模量和断裂伸长率均随SiO2含量增加而增加。当SiO2含量相同时,拉伸强度和断裂伸长率的变化顺序为:气相SiO2/PU>沉淀SiO2/PU>稻壳SiO2/PU,拉伸模量的变化顺序为:气相SiO2/PU>稻壳SiO2/PU>沉淀SiO2/PU.对于同一种SiO2/PU复合材料,吸水性随SiO2含量和温度增加而增加,含量相同时,3种SiO2/PU复合材料的吸水性由低到高的顺序是:稻壳SiO2/PU<沉淀SiO2/PU<气相SiO2/PU。  相似文献   

10.
This paper presents the properties of epoxy nanocomposites, prepared using a synthesized hybrid carbon nanotube–alumina (CNT–Al2O3) filler, via chemical vapour deposition and a physically mixed CNT–Al2O3 filler, at various filler loadings (i.e., 1–5%). The tensile and thermal properties of both nanocomposites were investigated at different weight percentages of filler loading. The CNT–Al2O3 hybrid epoxy composites showed higher tensile and thermal properties than the CNT–Al2O3 physically mixed epoxy composites. This increase was associated with the homogenous dispersion of CNT–Al2O3 particle filler; as observed under a field emission scanning electron microscope. It was demonstrated that the CNT–Al2O3 hybrid epoxy composites are capable of increasing tensile strength by up to 30%, giving a tensile modulus of 39%, thermal conductivity of 20%, and a glass transition temperature value of 25%, when compared to a neat epoxy composite.  相似文献   

11.
Numerous carbon nanostructures have been investigated in the last years due to their excellent mechanical properties. In this work, the effect of the addition of graphene oxide (GO) nanoparticles to UHMWPE and the optimal %wt GO addition were investigated. UHMWPE/GO nanocomposites with different GO wt% contents were prepared and their mechanical, thermal, structural and wettability properties were investigated and compared with virgin UHMWPE. The results showed that the thermal stability, oxidative resistance, mechanical properties and wettability properties of UHMWPE were enhanced due to the addition of GO. UHMWPE/GO materials prepared with up to 0.5 wt% GO exhibited improved characteristics compared to virgin UHMWPE and nanocomposites prepared with higher GO contents.  相似文献   

12.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   

13.
The present investigation deals with the preparation and characterization of nanocomposites of polyether ether ketone (PEEK) containing nanosized zirconia filler up to 3 wt.% loading. It has been observed that presence of zirconia filler dispersed in polymer matrix enhances various basic and functional properties (e.g., mechanical properties, thermal stability & other physico-mechanical properties). The SEM studies reveal that the dispersion of zirconia nanofiller is uniform throughout the polymer matrix. The thermal stability of the nanocomposites has been studied by TGA. Thermal analysis of the composites shows an increase in the thermal stability with increase of nanofiller content. This may be attributed to strong interaction between polymer chains and filler particles. DMA studies show the significant improvement in storage modulus of the nanocomposites because of better interaction of zirconia particles in PEEK matrix.  相似文献   

14.
Graphene oxide (GO) reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers in the presence of GO sheets dispersed in N,N-Dimethylacetamide (DMAc). The functional groups (e.g., hydroxyl, epoxide, and carboxyl groups) associated with the GO make GO excellent dispersion in the organic solvent, which benefits the subsequent in situ polymerization. This process enabled uniform dispersion of GO sheets in the polymer matrix. The resultant GO-polyimide nanocomposite films were studied by tensile test, TGA and SEM. The results showed that the GO sheets incorporated in the polymer matrix exhibited a layer-aligned structure without destruction of the thermal stability of the polymer matrix, and a loading of GO (10 wt%) resulted in a significant enhancement in elastic modulus (86.4%).  相似文献   

15.
Poly(butylene succinate) (PBS)/graphene oxide (GO) nanocomposites were fabricated via in situ polymerization with very low GO content (from 0.03 to 0.5 wt%). The microstructures of the nanocomposites were characterized with Raman spectroscopy, fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), sedimentation experiments and atomic force microscopy (AFM). The results showed that PBS chains have been successfully grafted onto GO sheets during in-situ polymerization, accompanied by the thermo-reduction from GO to graphene. The grafted GO displayed a great nucleating effect on PBS crystallization, resulting in largely improved crystallization temperature and decreased spherules size. A simultaneous enhancement in tensile strength and elongation was achieved for PBS/GO nanocomposites fiber. Meanwhile, increase in hydrolytic degradation rate was also observed for these nanohybrids. Our result indicates that using very low content GO is a simple way to achieve good dispersion yet with remarkable property enhancement for polymer/GO nanocomposites.  相似文献   

16.
The in-situ bulk polycondensation process in combination with a ball milling dispersion process was used to prepare the water blown multiwall carbon nanotubes (CNT)/polyurethane (PU) composite foam. The mechanical properties, piezoresistive properties, strain sensitivity, stress and resistance relaxation behaviors of the composite foams were investigated. The results show that the CNT/PU composite foam has a better compression strength than the unfilled polyurethane foams and a negative pressure coefficient behavior under uniaxial compression. The resistance response of CNT/PU nanocomposites foam under cyclic compressive loading was quite stable. The nanocomposite foam containing a weight fraction of carbon nanotubes close to the percolation threshold presents the largest strain sensitivity for the resistance. The characteristic of resistance relaxation of CNT/PU composite foam is different from the stress relaxation due to the different relaxation mechanism. During compressive stress relaxation, the CNT/PU foam composites have excellent resistance recoverability while poor stress recoverability.  相似文献   

17.
Dodecyl sulfate (DS), one kind of sulfate anion, was intercalated in the interlayer space between CoAl layered double hydroxide (CoAl-LDH) layers, and then polyurethane (PU) based nanocomposites were prepared by in situ intercalation polymerization with different amounts of the organo-modified CoAl-LDH. An exfoliated dispersion of CoAl-LDH layers in PU matrix was verified by the disappearance of the (0 0 3) reflection of the XRD results when the LDH loading was less than 2.0 wt%. Tensile testing indicated that excellent mechanical properties of PU/LDH nanocomposites were achieved. The weak alkaline catalysis of DS to polyurethane chains, combined with the dehydration and structural degradation of the LDH below 300 °C, accounted for the process of proceeded degradation as shown in TGA results. The real-time FTIR revealed that the as-prepared nanocomposites had a slower thermo-oxidative rate than neat PU from 160 °C to 340 °C, probably due to the barrier effect of LDH layers. These results suggested potential applications of CoAl-LDH as a promising flame retardant in PUs.  相似文献   

18.
Graphite oxide (GO)/poly(methyl methacrylate) (PMMA) nanocomposites were prepared by a novel method utilizing macroazoinitiator (MAI). The MAI, which has a poly(ethylene oxide) (PEO) segment, was intercalated between the lamellae of GO to induce the inter-gallery polymerization of methyl methacrylate (MMA) and exfoliate the GO. The morphological, conductivity, thermal, mechanical and rheological properties of these nanocomposites were examined and compared with those of intercalated nanocomposites prepared by polymerization with the normal radical initiator, 2,2′-azobisisobutyronitrile. The improvement in conductivity by GO was more evident in exfoliated nanocomposites compared to that of intercalated nanocomposites. For example, a conductivity of 1.78 × 10−7 S/cm was attained in the exfoliated nanocomposite prepared with 2.5 parts GO per 100 parts MMA, which was about 50-fold higher than that of the intercalated nanocomposite. The thermal, mechanical and rheological properties also indicate that thin GO with a high aspect ratio is finely dispersed and effectively reinforced the PMMA matrix in both exfoliated and intercalated nanocomposites.  相似文献   

19.
Graphene oxide/polyurethane/epoxy (GO/PU/EP) membranes were directly fabricated by functionalization of graphene oxide with epoxy-grafted polyurethane (GO-UE), and the interface correlation and crack propagation mechanisms in GO/PU/EP membranes interlaminar-toughened carbon fiber-reinforced polymer composites were investigated. The functionalized GO-UE with corrugation and scrolling nature of graphene sheets was evenly dispersed in GO/PU/EP membranes below 0.50 wt% loading. Mode I fracture toughness, flexural properties and interlaminar shear strength of GO/PU/EP membranes-toughened composites were enhanced in comparison with untoughened composites and PU/EP membranes-toughened composites, which was ascribed to the multifold interface bonding between the GO-UE layers, epoxy matrix and carbon fiber. Schematic models of multilevel crack propagations were proposed based on different crack extension directions to GO-UE and the morphology evolutions of GO-UE in the interlaminar region and at the carbon fiber interface in toughened composites, which highlighted the toughening mechanisms of crack pinning, crack deflection and separation between GO-UE layers.  相似文献   

20.
Three novel organic–inorganic hybrid molecules, layered zirconium phosphates or phosphonates, were synthesized. To study the effects of organic chain length of them on the structure and properties of polymer nanocomposites, the polyurethane/α-zirconium phosphate (PU/ZrP), polyurethane/zirconium 2-aminoethylphosphonate (PU/ZrAEP) and polyurethane/zirconium 2-(2-(2-(2-aminoethylamino)ethylamino)ethylamino) ethylphosphonate (PU/Zr(AE)4P) nanocomposites were prepared, and characterized by Fourier Transform Infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and tensile testing. It was revealed that morphological, mechanical, and thermal properties of these nanocomposites were strongly dependent on the organic chain length of the layered zirconium phosphonates. The results showed that the fillers with longer chain length exhibited better dispersion in the PU matrix. As expected, the mechanical properties and water resistance were improved with the increasing of organic chain length of fillers, which attributed to better interfacial adhesion between fillers and PU matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号