首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Graphene oxide (GO) was added to a polymer composites system consisting of surfactant-wrapped/doped polyaniline (PANI) and divinylbenzene (DVB). The nanocomposites were fabricated by a simple blending, ultrasonic dispersion and curing process. The new composites show higher conductivity (0.02–9.8 S/cm) than the other reported polymer system filled with PANI (10−9–10−1 S/cm). With only 0.45 wt% loading of GO, at least 29% enhancement in electric conductivity and 29.8% increase in bending modulus of the composites were gained. Besides, thermal stability of the composites was also improved. UV–Vis spectroscopy, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) revealed that addition of GO improves the dispersion of PANI in the polymer composite, which is the key to realize high conductivity.  相似文献   

2.
3.
The paper reports the results of a project aiming to obtain multifunctional binary and ternary polymer nanocomposites with enhanced mechanical and anti-microbial properties. To this end a DGEBA-based epoxy resin is loaded using montmorillonite clays and later used as matrix for glass fibre reinforced laminates. Both binary and ternary nanomodified specimens are manufactured and subjected to mechanical testing. An accurate analysis of the effect of nanomodification on the biological activity is carried out as well.  相似文献   

4.
In this paper, we demonstrate a novel strategy for fabricating advanced polymer composites based on functionalized graphene oxide decorated with phosphorus-nitrogen-containing dendrimers (PND-GO). Both X-ray diffraction and transmission electron microscopy results show that reduced PND-GO uniformly disperses within polymer matrix and is exfoliated in polyurethane (PU) via in situ polymerization. Cone calorimetry results show that incorporating 2 wt% reduced PND-GO into PU decreases the peak heat release rate by 53% and prolongs the time to ignition by 28 s as compared with the PU bulk. Besides, the tensile strength and Young’s modulus are remarkably enhanced by about 2 times and 5 times, respectively.  相似文献   

5.
6.
In order to explore the addition effect of fluorinated graphene (FG) on the mechanical and thermal performances of polyimide (PI) matrix, FG sheets are first prepared and employed as the nanofillers to construct PI/FG nanocomposite films. The prepared film is optically transparent at low content of FG and experimental results demonstrate that the addition of FG can effectively enhance the properties of PI matrix. Especially, compared with pure PI matrix, the addition of 0.5 wt% FG in PI can endow 30.4% increase in tensile stress and 115.2% increase in elongation at break. Experimental analyses considering the morphology and microstructure are also conducted, and the results indicate that the improved mechanical properties of the PI/FG nanocomposite films are mainly attributed to the good dispersibility of FG sheets in PI host, and the effective stress transfer between the polymer and the FG.  相似文献   

7.
The graphene oxide sheets (GOs) reacted with 4,4′-diphenylmethane diisocyanate (MDI) and then stearic acid to form the functionalized graphene sheets (FGs), in order to improve their compatibility with isotactic polypropylene (iPP). The iPP incorporated with FGs were adequately mixed in a Haaker mixer and then compression molded to obtain the iPP/FGs nanocomposites. The crystallization, thermal stability and mechanical properties of the nanocomposites together with iPP/graphite sheets (Gs) and iPP/GOs composites were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and tensile test. The FGs achieved good dispersion with exfoliated and intercalated nanostructure and strong interfacial adhesion with iPP, which made the nanocomposites have a significant enhancement of thermal stability and mechanical properties at low FGs loadings.  相似文献   

8.
The polymer composites composed of graphene foam (GF), graphene sheets (GSs) and pliable polydimethylsiloxane (PDMS) were fabricated and their thermal properties were investigated. Due to the unique interconnected structure of GF, the thermal conductivity of GF/PDMS composite reaches 0.56 W m−1 K−1, which is about 300% that of pure PDMS, and 20% higher than that of GS/PDMS composite with the same graphene loading of 0.7 wt%. Its coefficient of thermal expansion is (80–137) × 10−6/K within 25–150 °C, much lower than those of GS/PDMS composite and pure PDMS. In addition, it also shows superior thermal and dimensional stability. All above results demonstrate that the GF/PDMS composite is a good candidate for thermal interface materials, which could be applied in the thermal management of electronic devices, etc.  相似文献   

9.
Dispersibility of graphene sheets in polymer matrices and interfacial interaction are challenging for producing graphene-based high performance polymer nanocomposites. In this study, three kinds nanofillers; pristine graphene nanoplatelets (GNPs), graphene oxide (GO), and functionalized graphene sheet (FGS) were used to prepare polyurethane (PU) composite by in-situ polymerization. To evaluate the efficacy of functional groups on the graphene sheets, PU reinforced with GNPs, GO, and FGS were compared through tensile testing and dynamic mechanical thermal analysis. The Young's moduli of 2 wt% GO and FGS based PU nanocomposites were found significantly higher than that of same amount of GNPs loading as an evidence of the effect of functional groups on graphene sheets for the mechanical reinforcement. The strong interaction of FGS with PU was responsible to exhibit notably high modulus (25.8 MPa) of 2 wt% FGS/PU composite than the same amount of GNPs and GO loading even at elevated temperature (100 °C).  相似文献   

10.
In order to explore practical application of graphene as novel conductive fillers in the filed of composite materials, we prepared anti-static multi-layer graphene (MLG) filled poly(vinyl chloride) (PVC) composite films by using conventional melt-mixing method, and investigated electrical conductivity, tensile behavior, and thermal properties of the MLG/PVC composite films. We found that the presence of MLG can greatly increase electrical conductivity of the MLG/PVC composites, and the surface electrical conductivity of the MLG/PVC composites is less than 3 × 108 Ohm/square when the MLG loading is about 3.5 wt%, meeting anti-static requirement for commercial anti-static PVC films. On the other hand, the MLG/PVC composites exhibited higher tensile modulus and higher glass transition temperature than neat PVC, which is closely associated with crumpled morphology of the MLG and good compatibility between components of the MLG/PVC composites. By virtue of its satisfied anti-static performance and high mechanical properties, the MLG/PVC composites exhibit great potential to be used as high-performance antistatic materials in many fields.  相似文献   

11.
In this work, a coarse-grained (CG) model of carbon nanotube (CNT) reinforced polymer matrix composites is developed. A distinguishing feature of the CG model is the ability to capture interactions between polymer chains and nanotubes. The CG potentials for nanotubes and polymer chains are calibrated using the strain energy conservation between CG models and full atomistic systems. The applicability and efficiency of the CG model in predicting the elastic properties of CNT/polymer composites are evaluated through verification processes with molecular simulations. The simulation results reveal that the CG model is able to estimate the mechanical properties of the nanocomposites with high accuracy and low computational cost. The effect of the volume fraction of CNT reinforcements on the Young's modulus of the nanocomposites is investigated. The application of the method in the modeling of large unit cells with randomly distributed CNT reinforcements is examined. The established CG model will enable the simulation of reinforced polymer matrix composites across a wide range of length scales from nano to mesoscale.  相似文献   

12.
This communication reported the substantial improvement in the mechanical and thermal properties of a polyurethane (PU) resulting from the incorporation of well-dispersed graphene oxide (GO). The stress transfer benefited from the covalent interface formed between the PU and GO. The Young’s modulus of the PU was improved by ∼7 times with the incorporation of 4 wt% GO, and the improvement of ∼50% in toughness was achieved at 1 wt% loading of GO without losing elasticity. Significant improvements were also demonstrated in the hardness and scratch resistance measured by nano-indentation. Thermogravimetric analysis revealed that the decomposition temperature was increased by ∼50 °C with the addition of 4 wt% GO.  相似文献   

13.
In order to employ polyethersulfone (PES) in cryogenic engineering field, its cryogenic mechanical performance should be examined and should also be improved to meet the high requirement for cryogenic engineering application. In this work, pure PES, graphene oxide (GO)/PES, short carbon fiber (SCF)/PES, GO/SCF/PES and GO-coated SCF/PES composites are prepared using the extrusion compounding and injection molding techniques. The tensile and flexural properties of these composites are systematically investigated at a typical cryogenic temperature (77 K). It is shown that the cryogenic mechanical properties are enhanced by the addition of GO, SCFs and coated-SCFs. In particular, the GO-coated SCF/PES composites display the greatly enhanced cryogenic mechanical properties with the highest values compared to other PES composites. In addition, it is exhibited that the cryogenic mechanical properties at 77 K of PES and its composites are far higher than those at room temperature (RT).  相似文献   

14.
Review of the mechanical properties of carbon nanofiber/polymer composites   总被引:1,自引:0,他引:1  
In this paper, the mechanical properties of vapor grown carbon nanofiber (VGCNF)/polymer composites are reviewed. The paper starts with the structural and intrinsic mechanical properties of VGCNFs. Then the major factors (filler dispersion and distribution, filler aspect ratio, adhesion and interface between filler and polymer matrix) affecting the mechanical properties of VGCNF/polymer composites are presented. After that, VGCNF/polymer composite mechanical properties are discussed in terms of nanofibers dispersion and alignment, adhesion between the nanofiber and polymer matrix, and other factors. The influence of processing methods and processing conditions on the properties of VGCNF/polymer composite is also considered. At the end, the possible future challenges for VGCNF and VGCNF/polymer composites are highlighted.  相似文献   

15.
Research on flexible thermal interface materials (TIMs) has shown that the interconnected network of graphene foam (GF) offers effective paths of heat transportation. In this work, a variant amount of multilayer graphene flakes (MGFs) was added into 0.2 vol% GF/polydimethylsiloxane (PDMS) composite. A remarkable synergistic effect between MGF and GF in improving thermal conductivity of polymer composites is achieved. With 2.7 vol% MGFs, the thermal conductivity of MGF/GF/PDMS composite reaches 1.08 W m−1 K−1, which is 80%, 184% and 440% higher than that of 2.7 vol% MGF/PDMS, GF/PDMS composites and pure PDMS, respectively. The MGF/GF/PDMS composite also shows superior thermal stability. The addition of MGFs and GF decreases slightly the elongation at break, but observably increases the Young’s modulus and tensile strength of composites compared with pure PDMS. The good performance of MGF/GF/PDMS composite makes it a good TIM for possible application in thermal management of electronics.  相似文献   

16.
High density polyethylene (HDPE)/attapulgite (AT) nanocomposites, prepared by conventional injection molding (CIM) and dynamic packing injection molding (DPIM), were investigated with focus on AT-induced crystallization and orientation under shear. Infrared spectroscopy (FTIR) analysis showed there is no special chemical interaction between HDPE and AT, but shear induced significant changes on the material structure and properties. Differential scanning calorimetry (DSC) analysis showed strong nucleation effect by AT especially under shear. And more, shear will induce much better dispersion of AT in the DPIM sample vs. CIM. AT nanorods and lamellae of HDPE are more organized in the DPIM sample while there is only random distribution in the CIM sample. Most AT nanorods embed in the HDPE lamellae and form a brush-like hybrid structure due to shear. The shear-induced orientation will be enhanced with higher AT loading. The mechanical performance of the composites was significantly improved via DPIM.  相似文献   

17.
Polylactide reinforced with 3 wt% of organo-modified montmorillonite, 5 wt% of stearic acid-modified calcium carbonate nanoparticles, 15 wt% of cellulose fibers (PLA/MMT, PLA/NCC, PLA/CF) and hybrid composites containing 15 wt% of fibers in addition to montmorillonite (PLA/MMT/CF) or calcium carbonate (PLA/NCC/CF) were prepared and examined. The nanoparticles were dispersed in polylactide almost homogeneously; montmorillonite was exfoliated during processing. Tg of polylactide remained unaffected but its cold crystallization was enhanced; the cold-crystallization behavior of the hybrid composites was dominated by nanofillers nucleating ability. The fibers and calcium carbonate decreased whereas exfoliated montmorillonite improved the thermal stability of the materials. Polylactide, PLA/NCC and PLA/MMT exhibited ability to plastic deformation, although the latter the weakest. Tensile behavior of the hybrid composites was strongly influenced by the fibers and similar to that of PLA/CF. All the fillers increased the storage modulus below Tg; that of PLA/MMT/CF and PLA/NCC/CF was improved with respect to polylactide by 50% and 45%, respectively.  相似文献   

18.
Polyetheretherketone (PEEK) composites reinforced with carbon fibers (CFs) and nano-ZrO2 particles were prepared by incorporating nanoparticles into PEEK/CF composites via twin-screw extrusion. The effects of nanoparticles on the mechanical and wear properties of the PEEK/CF composites were studied. The results showed that the incorporation of nano-ZrO2 particles with carbon fiber could effectively enhance the tensile properties of the composites. The tensile strength and Young’s modulus of the composites increased with the increasing nano-ZrO2 content. The enhancement effect of the particle was more significant in the hybrid reinforced composites. The compounding of the two fillers also remarkably improved the wear resistance of the composites under water condition especially under high pressures. It was revealed that the excellent wear resistance of the PEEK/CF/ZrO2 composites was due to a synergy effect between the nano-ZrO2 particles and CF. CF carried the majority of load during sliding process and prevented severe wear to the matrix. The incorporation of nano-ZrO2 effectively inhibited the CF failures through reducing the stress concentration on the carbon fibers interface and the shear stress between two sliding surfaces. It was also indicated that the wear rates of the hybrid composites decreased with the increasing applied load and sliding distance under water lubrication. And low friction coefficient and low wear rate could be achieved at high sliding velocity.  相似文献   

19.
In this work, effect of ZnO nanoparticles doped graphene (Nano-ZnO–GE) on static and dynamic mechanical properties of natural rubber composites were studied. Nano-ZnO–GE was synthesized by sol–gel method and thermal treatment. With the incorporation of nano-ZnO–GE into the matrix, the mechanical properties of NR nanocomposite significantly improved over that of NR composite containing with 5 phr of conventional-ZnO. The results demonstrated that the presence of nano-ZnO on the surface of graphene sheets not only conduces to suppressing aggregation of graphene sheets but also acts as a more efficient cure-activator in vulcanization process, with the formation of excellent crosslinked network at low nano-ZnO–GE content. This work also showed that NR/Nano-ZnO–GE nanocomposites exhibited higher wet grip property and lower rolling resistance compared with NR/Conventional-ZnO composite, which makes nano-ZnO–GE very competitive for the green tire application as a substitute of conventional-ZnO, enlarging versatile practical application to prepare high-performance rubber nanocomposites.  相似文献   

20.
The present research work demonstrated the effect of graphene oxide (GO) on the physical, mechanical, thermo-mechanical etc., properties of neoprene (CR) and chlorosulfonated polyethylene (CSPE) vulcanizates. CR and CSPE based nanocomposites were prepared by both solution intercalation and melt intercalation methods. The changes obtained in the morphology, cure characteristics, mechanical, thermal, thermo-mechanical properties of the rubber nanocomposites have been widely investigated. X-ray diffraction analysis (XRD) and transmission electron microscopic (TEM) analysis of the samples revealed partial exfoliated structure of GO containing rubber composites. Mechanical, thermal, cure and thermo-mechanical properties of the elastomeric nanocomposites were improved compared to the neat rubbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号