首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology, microstructure, tensile properties, and dynamic mechanical properties of solid and microcellular poly(lactic acid) (PLA)/polyhydroxybutyrate-valerate (PHBV) blends, as well as PLA/PHBV/clay nanocomposites, together with the thermal and rheological properties of solid PLA/PHBV blends and PLA/PHBV/clay nanocomposites, were investigated. Conventional and microcellular injection-molding processes were used to produce solid and microcellular specimens in the form of ASTM tensile test bars. Nitrogen in the supercritical state was used as the physical blowing agent in the microcellular injection molding experiments. In terms of rheology, the PLA/PHBV blends exhibited a Newtonian fluid behavior, and their nanocomposite counterparts showed a strong shear-thinning behavior, over the full frequency range. An obvious pseudo-solid-like behavior over a wide range of frequencies in the PLA/PHBV/clay nanocomposites suggested a strong interaction between the PLA/PHBV blend and the nanoclay that restricted the relaxation of the polymer chains. PLA/PHBV/clay nanocomposites possess a higher modulus and greater melt strength than PLA/PHBV blends. The addition of nanoclay also decreased the average cell size and increased the cell density of microcellular PLA/PHBV specimens. As a crystalline nucleating agent, nanoclay significantly improved the crystallinity of PHBV in the blend, thus leading to a relatively high modulus for both solid and microcellular specimens. However, the addition of nanoclay had less of an effect on the tensile strength and strain-at-break.  相似文献   

2.
The effects of adding an epoxy-based chain-extender (CE) on the properties of injection-molded solid and microcellular polylactide (PLA) were studied. PLA and PLA with 8 wt.% CE (PLA-CE) were melt-compounded using a twin-screw extruder. Solid and microcellular specimens were produced via a conventional and microcellular injection-molding process, respectively. Various characterization techniques including gel permeation chromatography, tensile testing and dynamic mechanical analysis, scanning electron microscopy and differential scanning calorimetry were applied to study the molecular weight, static and dynamic mechanical properties, cell morphology, and crystallization behavior, respectively. The addition of CE enhanced the molecular weight but decreased the crystallinity of PLA. The addition of CE also reduced the cell size and increased the cell density. Furthermore, the decomposition temperatures and several tensile properties, including specific strength, specific toughness, and strain-at-break of both solid and microcellular PLA specimens, increased with the addition of CE.  相似文献   

3.
Both non-isothermal and isothermal crystallization behaviors of neat HDPE and organo-nanoclay treated and untreated kraft fiber–high density polyethylene (HDPE) or HDPE–maleic anhydride polyethylene (MAPE) composites were analyzed using differential scanning calorimetry (DSC). The isothermal crystallization process was studied by the Avrami model. The crystallization patterns and organo-nanoclay distribution was characterized by X-ray diffraction (XRD). It was found that both organo-nanoclay treated and untreated kraft fibers could act as nucleating agent for the HDPE polymer when the fiber length was comparatively small. All composites crystallized much faster than the neat HDPE, while their crystallinity levels were lower. The organo-nanoclay treatment of kraft fibers made the crystallinity level lower, but the nucleation rate increased in the composites compared to the untreated kraft fiber–HDPE composites. But both the crystallinity level and the nucleation rate of the composites were increased by adding MAPE compatibilizer to the composites. MAPE increased the d-spacing of the organo-nanoclay layers in the composites and resulted in exfoliated clay platelets when the fiber loading was as high as 40 wt%.  相似文献   

4.
以滑石粉为成核剂,超临界CO_2为发泡剂,采用间歇釜式方法制备微孔发泡木粉/聚丙烯复合材料。采用DSC、XRD和SEM对微孔发泡木粉/聚丙烯复合材料的结晶行为与泡孔结构进行了测定与分析。结果表明:滑石粉的添加能够提高微孔发泡木粉/聚丙烯复合材料的结晶温度,诱导产生不完善的α晶型;能够提高聚合物基体的熔体黏度,减小泡孔尺寸,增加泡孔密度,促使泡孔尺寸分布更均匀,最终能够形成泡孔密度为1.0×10~9个/cm~3、平均泡孔半径为16.4μm、发泡倍率为18倍、表观密度约为0.055g/cm~3的微孔发泡木粉/聚丙烯复合材料。  相似文献   

5.
Poly(ethylene terephthalate) (PET) has been compounded with lignin (L) by a single-screw extruder. The influence of L presence and its content on the thermal properties and crystalline structure of PET has been studied. Morphological analyses evidenced good dispersion of the L particles in the PET matrix. Polarizing optical microscopy (POM) and small-angle X-ray scattering (SAXS) techniques were employed to measure the L particles dimension. The influence of L on the overall isothermal crystallization of PET was investigated by using differential scanning calorimetry (DSC). L particles acting as nucleating agent in the composite increased the crystallization rate. The crystallization process was composed of primary and secondary stages. As the L content was increased in the composite, the primary crystallization progressively proceeded toward higher percentage of the crystallizable PET fraction. As evidenced by SAXS and wide angle X-ray diffraction (WAXD), the L presence produced a noticeable enhancement of PET crystallinity and crystal dimensions.  相似文献   

6.
An experimental study of the incorporation of non-fluorinated and fluorinated Twaron fibers in polypropylene (PP) is presented. Surface modifications were made to Twaron fiber by direct fluorination technique using elemental fluorine in order to improve the interfacial adhesion between the fiber and matrix. Composites of PP/Twaron fiber (both Fluorinated and non-fluorinated) with 0.6%, 1.25%, 5% and 10% of Twaron fibers (w/w) were prepared by a solution method. Mechanical behaviour was estimated by the measurement of the tensile strength. The mechanical properties of PP improve significantly with the incorporation of Twaron fibers and fluorinated fiber composites show superior mechanical properties compared to the non-fluorinated system. The morphology was determined by scanning electron microscopy (SEM), showing good dispersion of the fibers. The thermal and crystallization behaviour of PP/Twaron fiber composites were studied by thermogravimetry (TG) and differential scanning calorimetry (DSC). The effect of fiber content and fiber surface treatments on the thermal properties was evaluated. DSC analysis exhibited an increase in the crystallization temperature and crystallinity, melting temperature upon the addition of fluorinated fibers to the PP matrix. This is attributed to the nucleating effects of the fiber surfaces. Also the thermal stability (from TG) and surface energy (determined from contact angle measurement) increased for fluorinated fiber composites. Surface modification of Twaron fibers leads to improved adhesion with the PP matrix and hence an improvement in properties of the Twaron fiber-PP composites.  相似文献   

7.
Polylactide reinforced with 3 wt% of organo-modified montmorillonite, 5 wt% of stearic acid-modified calcium carbonate nanoparticles, 15 wt% of cellulose fibers (PLA/MMT, PLA/NCC, PLA/CF) and hybrid composites containing 15 wt% of fibers in addition to montmorillonite (PLA/MMT/CF) or calcium carbonate (PLA/NCC/CF) were prepared and examined. The nanoparticles were dispersed in polylactide almost homogeneously; montmorillonite was exfoliated during processing. Tg of polylactide remained unaffected but its cold crystallization was enhanced; the cold-crystallization behavior of the hybrid composites was dominated by nanofillers nucleating ability. The fibers and calcium carbonate decreased whereas exfoliated montmorillonite improved the thermal stability of the materials. Polylactide, PLA/NCC and PLA/MMT exhibited ability to plastic deformation, although the latter the weakest. Tensile behavior of the hybrid composites was strongly influenced by the fibers and similar to that of PLA/CF. All the fillers increased the storage modulus below Tg; that of PLA/MMT/CF and PLA/NCC/CF was improved with respect to polylactide by 50% and 45%, respectively.  相似文献   

8.
聚乳酸(PLA)作为新型的绿色友好材料有非常广阔的应用前景。为有效解决PLA韧性差、结晶速率低等问题,本文提出了以纤维素改性PLA的方法。首先以细菌纤维素(BC)为底物,使L-丙交酯(LLA)在其表面进行原位开环聚合,得到了BC-g-PLA接枝产物;然后将该接枝产物作为增韧剂添加到PLA中,采用溶液浇筑的方法制备得到复合薄膜材料。结果表明:溶液接枝法的反应效率比熔融接枝法更高,接枝率可达到76.60%;通过FTIR、核磁共振波谱仪与XRD对接枝产物进行结构测试,证实了PLA成功接枝到BC表面;通过偏光显微镜观察复合薄膜材料晶体形貌发现BC-g-PLA作为异相成核剂,添加量为0.6%时,对球晶的均匀细化程度最高;通过力学性能测试发现,PLA薄膜增韧改性后断裂伸长率可提高175%,拉伸强度可提高22.7%;通过差示扫描量热仪测试复合薄膜材料的结晶性能,结晶度从未改性的2.53%提高到13.26%,结晶速率也有所增加。  相似文献   

9.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/coir fiber composites were prepared via both conventional and microcellular injection-molding processes. The surface of the hydrophilic coir fiber was modified by alkali- and silane-treatment to improve its adhesion with PHBV. The morphology, thermal, and mechanical properties were investigated. The addition of coir fiber (treated and untreated) reduced cell size and increased cell density. Further decrease in cell size and increase in cell density was observed for treated fibers compared with PHBV/untreated-fiber composites. Mechanical properties such as specific toughness and strain-at-break improved for both solid and microcellular specimens with the addition of coir fibers (both treated and untreated); however, the specific modulus remained essentially the same statistically while the specific strength decreased slightly. The silane-treated coir fiber composites showed the greatest improvement in specific toughness and strain-at-break among the treated-fiber composites. In addition, adding coir fibers (treated and untreated) also increased the degree of crystallinity of the PHBV composites. PHBV with treated coir fibers showed a higher degree of crystallinity compared with untreated coir fibers.  相似文献   

10.
为研究多壁碳纳米管(MWNTs)对聚乳酸(PLA)冷结晶动力学和球晶形态的影响,分别以PLA和表面包覆纳米SiO2并接枝硅烷偶联剂的纳米SiO2改性MWNTs(SiO2-MWNTs)为基体和改性剂,经溶液共混法制备了SiO2-MWNTs/PLA复合材料。采用DSC、偏光显微镜、Jeziorny模型和Johnson-Mehl-Avrami模型研究了复合材料的非等温冷结晶动力学和球晶形态。结果表明:SiO2-MWNTs可作为异相成核剂,能有效降低SiO2-MWNTs/PLA复合材料的冷结晶温度,提高晶核生成速率和晶体生长活化能。SiO2-MWNTs/PLA复合材料的冷结晶过程主要由成核作用控制,加入SiO2-MWNTs可同时提高复合材料的结晶速率和结晶度。冷结晶时,PLA球晶尺寸小于熔体冷却结晶时的,且SiO2-MWNTs含量对冷结晶球晶尺寸的影响远小于其对熔体冷却结晶球晶尺寸的。所得结论对优化PLA的结晶结构和性能、制备高性能PLA复合材料具有指导意义。  相似文献   

11.
Carbon nanotube (CNT)–reinforced polylactide (PLA) nanocomposites were prepared using a melt compounding process employing a twin-screw extruder. The isothermal crystallization kinetics of PLA/CNT nanocomposites according to Avrami’s theory were analyzed using differential scanning calorimetry in the temperature range 90–120 °C. There was a significant dependence of CNT on the crystallization behavior of the PLA matrix. The incorporation of CNT improved effectively the crystallization rate of PLA/CNT nanocomposites through heterogeneous nucleation. The nucleating effect of CNTs which increased the number of nucleation sites and decreased the average spherulite size was confirmed using polarized optical microscopy. The rheological properties of the PLA/CNT nanocomposites were also investigated. Changes in the microstructure of the PLA/CNT nanocomposites occurred by incorporating CNT. Furthermore, the tensile strength/modulus and thermal stability of PLA/CNT nanocomposites were enhanced when a very small quantity of CNT was added. This research accounts for the effect of CNTs, which significantly influenced the isothermal behavior, thermal stability, mechanical, and rheological properties of the PLA/CNT nanocomposites, providing a design guide for PLA/CNT nanocomposites in industrial fields.  相似文献   

12.
This novel research aims to develop, for the first time, microcellular polyethylene fiber-reinforced polyethylene (PE/PE) clay containing nano-composites during a solid-state microcellular foaming process using supercritical nitrogen (scN2) as a foaming agent. Results show that by employing clay nanoparticles in the matrix, expansion ratio of the microcellular processed composites enhance, because of the nucleating effect of nanoparticles. Microcellular nano-homocomposite has an average cell size of 0.5 μm. Trans-crystalline layer of composites with a length of about 3 μm; remain intact during the foaming process but the bulk matrix crystalline structure alters to a more oriented “quasi-fibrillar” structure after foaming. Microcell growth in the amorphous interlamellar regions exerts a tension on the neighboring lamellas which cause some orientation on them. The DSC studies show the emerging of new crystalline sectors with a lower melting point which affirms the creation of a less perfect crystalline morphology due to cell wall movements during cell growth step and subsequent stabilization period of the cells.  相似文献   

13.
通过静电纺丝法制备出多壁碳纳米管(MWNTs)增强聚乳酸(PLA)复合超细纤维膜。用扫描电镜、透射电镜、差示扫描量热仪、热重分析仪对MWNTs/PLA复合超细纤维进行了表征,并进行了拉伸测试。结果表明,MWNTs分散于PLA纤维中,随着MWNTs含量的增加,纤维平均直径先减小后增大,MWNTs的加入会降低PLA的结晶度...  相似文献   

14.
This study aimed at the fabrication of lightweight and high performance nanocomposite fibers. Polypropylene/multiwalled carbon nanotubes (PP/MWCNTs) nanocomposite fibers (0–5 wt% of MWCNTs) were prepared via melt spinning process. The MWCNTs were dispersed in the dispersing agent before mixing with PP powder. After mixing, the dispersing agent was removed. Then the nanocomposites were spun into fibers. The fibers were spun and stretched with 7.5 draw ratios. Crystallization behavior and thermal properties of PP/MWCNTs nanocomposite fibers were studied using the differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA). The DSC curves of PP/MWCNTs nanocomposite fibers showed the crystallization peak at a temperature higher than that of neat PP fibers. These results revealed that the MWCNTs acted as nucleating sites for PP crystallization. The additions of MWCNTs into PP leaded to an increase in both crystallization temperature and crystallization enthalpy. However, no significant changes in the melting temperatures of the PP nanocomposites were detected. Degradation temperature of samples obtained from the TGA curves showed increase thermal degradation behavior for the PP/MWCNTs with the content of MWCNTs. It was found that the increase of tensile strength and modulus corresponded well with the increase of crystallinity of the composite fibers.  相似文献   

15.
Bead foaming technology with double crystal melting peak structure has been recognized as a promising method to produce high-performance low-density foams with complex geometries. Polylactide (PLA) bead foaming has been of the great interest of researchers due to its origin from renewal resources and biodegradability. However, due to the PLA’s low melt strength and slow crystallization kinetics, the attempts have been limited to the manufacturing methods used for expanded polystyrene (EPS). In this study, we developed microcellular PLA bead foams with double crystal melting peak structure in a large content using a lab-scale autoclave system followed by molding of the beads. PLA bead foams were produced with expansion ratios and average cell sizes ranging from 6 to 31-fold and 6 to 50 μm, respectively. The high-melting point crystals generated during gas-saturation significantly affected the expansion ratio and cell density of the PLA bead foams by enhancing the PLA’s melt strength and promoting cell nucleation around the crystals. The tensile properties of the molded EPLA bead foams showed that EPLA bead foams with double crystal melting peak can be a promising substitute not only for EPS but also for expanded polypropylene (EPP) bead foams.  相似文献   

16.
Foamed poly(lactide) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends were processed via the microcellular extrusion process using CO2 as a blowing agent. Talc has been added to promote heterogeneous nucleation. Two types of PLA/PBAT blend systems were investigated: Ecovio, which is a commercially available compatibilized PLA/PBAT blend; and a non-compatibilized PLA/PBAT blend at the same PLA/PBAT ratio (i.e., 45:55 by weight percent). Six different formulations were investigated: pure PLA, PLA-talc, Ecovio, Ecovio-talc, non-compatibilized PLA/PBAT blend, and non-compatibilized PLA/PBAT-talc. The effects of various processing parameters such as die temperature, talc and compatibilization on various foaming properties such as cell morphology, volume expansion ratio (VER), open cell content (OCC) and crystallinity were investigated. As per the DSC thermograms, it was observed that compatibilization has merged the two distinctive melting peaks of PLA and PBAT into a single peak while lowering the peak temperature. In general, the addition of talc has decreased the average cell size and VER and increased the cell density and crystallinity; however, it has varying effects on the open cell content. Compatibilization has reduced the average cell size and volume expansion but increased the cell density and had varying and no effects on the OCC and crystallinity, respectively. Similar to compatibilization, the die temperature was found to have varying and no effects on the OCC and crystallinity, respectively. Except for PLA and non-compatibilized PLA/PBAT blend, the cell size and VER of all other formulations did not vary much throughout the entire temperature range (130–150 °C). The cell density was found to be insensitive to die temperatures except for Ecovio and Ecovio-talc.  相似文献   

17.
采用溶液聚合法在纳米 SiO2表面接枝两种不同性质的齐聚物聚乙二醇(PEG)和聚对苯二甲酸乙二酯低聚物(LMPET),通过 FTIR、1 H-NMR、XPS 和 HR-TEM 对其结构形貌进行表征。采用熔融共混制备 PET 纳米复合材料,并利用 DSC 和 XRD 对改性纳米 SiO2对 PET 结晶性能的影响进行研究。结果表明,LMPET 通过 PEG 成功接枝到 SiO2表面,粒径尺寸为40~50 nm;纳米 SiO2可作为成核剂诱导 PET 的结晶提高结晶速率,当添加量为2%(质量分数)时,结晶温度得到明显提高。  相似文献   

18.
The isothermal cold and melt crystallization behavior of intercalated polylactide (PLA)/clay nanocomposites (PLACNs) were studied using differential scanning calorimetry (DSC), polarized optical microscope (POM), X-ray diffractometer (XRD) and Fourier Transform Infra-Red Spectrometer (FT-IR). The results show that the degree of crystallinity of PLA matrix decreases monotonously with increasing clay loadings for both the cold and melt crystallization. The cold crystallized sample shows a double melting behavior and lower melting temperature compared to that of melt-crystallized sample, especially in the presence of clay. The crystallization kinetics was then analyzed by the Avrami and Lauritzen-Hoffman methods for further comparison between these two crystallization behaviors. The results reveal that PLA and its nanocomposites present higher activation energy in melt crystallization than that in cold crystallization due to the reptation of entire polymer chains. The addition of clay facilitates the overall kinetics of melt crystallization, which is attributed to both the nucleation effect of clay and enhanced diffusion of PLA chains. However, for cold crystallization, only very small amounts of clay can slightly increase the kinetics, while larger amounts impede the process. The presence of clay leads to a diffusion-controlled growth of nucleation of PLA matrix in the cold crystallization process and, the hindrance effect of clay hence becomes the dominant factor gradually with increasing clay loadings in the case of high-rate nucleation.  相似文献   

19.
Twin-screw extrusion was applied to prepare the carbon nanotubes/polylactic acid (CNT/PLA) nanocomposites. Five different extruded plates were produced under variation of CNT concentrations. The internal microstructures were also observed by optical microscope to examine the distribution and dispersion of CNT in the PLA. Besides, the crystallinity of the CNT/PLA nanocomposites was investigated by differential scanning calorimetry (DSC) and density method. The effects of the CNT concentrations on the mechanical and electrical properties of the nanocomposites were investigated. Scanning electron microscope (SEM) was performed to observe the CNT dispersion in the nano-scale. These results suggested that the crystallinity was increased with the increase of CNT concentrations, demonstrating that CNT played a role as a nucleating agent in PLA. Moreover, the mechanical and electrical properties of PLA have been improved by a proper incorporation of CNTs due to a good distribution and dispersion of the CNTs.  相似文献   

20.
Effects of molecular weight and structure of polyamide 6 (PA6) on morphology and properties of PA6/MWCNT prepared by melt mixing were investigated. Microscopic analysis showed fine dispersion of MWCNT within low viscosity PA6s due to domination of melt infiltration into MWCNT agglomerate at low viscosity matrices with linear structure. Rheological data indicated good interfacial interaction with no percolation of MWCNT up to 2 wt% loading. DSC thermograms showed nucleating role of MWCNT on crystallization of PA6s with marginal effect on crystallinity. Experimental data supported with micromechanical model showed limited improvement on mechanical properties, but it was closely consistent with degree of dispersion of MWCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号