首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国实验快堆(CEFR)在紧急停堆工况下,会在热钠池上部空间形成热分层现象。热分层出现后,由于上腔室底部存在大量的冷钠(相对而言),这将延缓一回路自然循环的建立。同时,冷钠的存在还会降低自然循环的流量,并对事故停堆后堆芯的冷却产生不利影响。因此,热分层现象应当引起广泛注意。从设备结构的完整性分析上看,快堆热分层现象的出现对堆容器和部分堆内构件是不利的,会使这些部件在结构内部形成明显的热应力,对堆的安全运行构成隐患。本文调研了国内外在该领域的研究状况,分析国外已有的实验研究和理论计算进展,并结合快堆现有的计算分析程序,对CEFR的热分层现象进行深入和较为全面的计算分析。通过计算分析可以看到,在全厂断电工况下,在热钠池的上部会初步形成稳定的热分层,分层界面位于中间热交换器入口的下方,但是热分层现象不会对堆的自然循环构成影响。  相似文献   

2.
在铅铋快堆紧急停堆后,上腔室发生热分层现象对堆内结构完整性和自然循环余热排出能力产生重要影响,需要重点关注。为克服传统热分层分析方法的缺陷,基于计算流体动力学(CFD)程序Fluent得到高精度的全阶快照,通过特征正交基分解(POD)与Galerkin投影结合的方法构建降阶热分层模型。通过与CFD全阶热分层模型对热分层现象进行对比分析,研究结果表明所开发的降阶热分层模型能很好地模拟上腔室温度分布,能快速地开展铅铋快堆事故下的热分层界面特性研究。本文研究对热分层现象产生机理、有效遏制热分层现象产生提供了重要分析工具。  相似文献   

3.
为深入研究第四代核能系统堆型之一铅基快堆的物理性能,进一步提高模块化铅基快堆的安全性和经济性,对铀锆合金燃料装载的不同功率水平的模块化铅基快堆堆芯特性进行研究,发现当堆芯功率提升至一定水平时,堆芯的增殖优势在规定寿期内不能得到充分释放。基于此现象,对模块化铅基快堆铀锆合金燃料堆芯的概念设计进行优化,基于堆芯功率水平和寿期,选择合适的栅距棒径比和燃料芯体有效密度,通过调整单位体积内的铀装量和235U装量调整堆芯的增殖性能,最终使堆芯反应性变化与堆芯功率、寿期基本匹配,寿期内堆芯反应性几乎不发生变化。优化后降低了堆芯反应性控制难度,充分利用了堆芯的增殖性能,同时合理的栅距棒径比为堆芯热工分析提供了安全和设计裕量,有效提高了堆芯的经济性和安全性。  相似文献   

4.
铅基快堆是一种极具发展潜力的第4代核能系统,在燃料增殖和嬗变方面具有独特优势,具有良好的非能动安全特性和经济性,且有利于实现小型化,是目前国际核能领域研究的热点。本文总结了国内外主要铅基堆型,指出了小型化是铅基快堆的发展方向,同时也指出了当前铅基快堆发展所面临的主要问题。针对热工水力关键问题的5个方面,即液态铅/铅铋流动换热特性研究、堆芯/组件热工水力分析、铅池内流动换热现象研究、系统热工水力安全分析以及特殊现象的热工水力分析,对国内外研究现状展开了分析,总结了当前研究成果,并分析了研究的发展趋势以及遇到的技术瓶颈。本文可为铅基快堆的设计和热工水力分析提供一定的建议和指导。  相似文献   

5.
朱光昱  郭超  刘巧凤  李春  依岩 《核技术》2023,(7):113-119
核电厂发生堆芯熔毁严重事故后,堆芯熔融物可能熔穿反应堆压力容器壁面造成第二道屏障失效,此时可通过堆芯捕集器收集并冷却熔融物以防止事故进一步发展。为了探讨俄罗斯VVER(Vodo-Vodyanoi Energetichesky Reactor)采用的坩埚式堆芯捕集器中熔融物的冷却过程,本文根据VVER堆芯捕集器设计资料推导参数,采用多物理场耦合软件COMSOL建立相应的计算模型,对堆芯捕集器中熔融池的流场、温度场和结壳情况进行了数值模拟研究。计算结果表明:在分层熔融池结构下,金属层会迅速凝固,含衰变热的氧化物层冷却十分缓慢。为了实现坩埚式堆芯捕集器设计功能,需要相关设备和支持辅助系统在很长时间内保持可运行性。  相似文献   

6.
铅冷行波堆具有安全性好、倒换料周期长、铀资源利用率高等突出优势,是先进核能系统的重点发展方向之一,实现反应性微小变化是铅冷行波堆堆芯方案设计的关键技术问题。本文以热功率700 MW、采用金属燃料的铅冷行波堆物理方案为研究对象,重点研究了堆芯点火区及增殖区设计参数变化对有效增殖因子(keff)的影响,分析了全寿期堆芯反应性的变化趋势。数值结果表明:点火区设计参数显著影响堆芯初始keff,点火区的易裂变核素装量越大,初始keff越大,通过调整点火区在堆芯轴向位置及其燃料富集度可有效降低反应性变化幅度;堆芯装载的可转换核素与易裂变核素之比越高,增殖产生的239Pu越多,整体增殖性能越好;增殖区越长,平衡态持续时间越长,堆芯寿期越长。本文研究结论可为铅冷行波堆堆芯物理方案设计及关键参数选择提供重要理论依据。   相似文献   

7.
以模块式小型堆ACP100为分析对象,建立MELCOR程序严重事故分析模型,分析了堆芯衰变热依次经过吊篮、压力容器壁面然后进入堆腔注水系统(CIS)的传热行为。采用燃料棒失效模型评价燃料组件坍塌行为,并通过ANSYS程序蠕变断裂模型评价堆芯下板失效行为。分析结果表明,严重事故后堆芯中心燃料组件坍塌形成堆芯熔融池,堆芯周围燃料组件保持完整结构状态,堆芯下板支撑堆芯熔融池和未坍塌的燃料组件且未发生蠕变断裂失效;CIS冷却压力容器外壁面并导出堆芯衰变热,最终实现熔融物堆芯滞留,避免下封头内形成熔融池。  相似文献   

8.
本文针对铅基快堆蒸汽发生器传热管破裂(SGTR)事故,利用计算流体力学(CFD)程序对LIFUS5/MOD2台架的汽水注射进液态金属铅铋环境进行研究。研究了3种热工水力现象:铅铋环境压力上升与压力波传递,铅池液位波动和气泡夹带与铅池液位上升和蒸汽扩散。研究结果表明:CFD模型在模拟SGTR事故的压力变化和压力波传递方面具有很小的计算误差;压力波峰值会随着水侧背压的升高而增大,且局部的蒸汽腔压力会低于附近的铅池压力,抑制蒸汽爆炸发生;同时事故引起的铅铋液位上升既会引起小尺寸气泡的输运夹带,也会对铅铋环境结构件造成冲击。  相似文献   

9.
本文针对铅基快堆蒸汽发生器传热管破裂(SGTR)事故,利用计算流体力学(CFD)程序对LIFUS5/MOD2台架的汽水注射进液态金属铅铋环境进行研究。研究了3种热工水力现象:铅铋环境压力上升与压力波传递,铅池液位波动和气泡夹带与铅池液位上升和蒸汽扩散。研究结果表明:CFD模型在模拟SGTR事故的压力变化和压力波传递方面具有很小的计算误差;压力波峰值会随着水侧背压的升高而增大,且局部的蒸汽腔压力会低于附近的铅池压力,抑制蒸汽爆炸发生;同时事故引起的铅铋液位上升既会引起小尺寸气泡的输运夹带,也会对铅铋环境结构件造成冲击。  相似文献   

10.
为研究铅基快堆中铅/铅铋的特殊热物性导致的在两相流情况下的热工水力特性,模拟流体通道中空泡存在对堆芯的输热能力以及安全性的影响,本文采用开源的CFD计算软件OpenFOAM,应用基于VOF方法的数值模拟,构建了铅基快堆中常见的三角形通道模型,通过与子通道程序的验证和单相条件下实验的校核,检验了所用代码的准确性,并对堆内冷却剂通道的两相流进行了模拟。模拟结果表明:随着两相流流速的增大,冷却剂出口温度降低。气液两相流在内通道流动过程中,气相基本在通道内部流动。随着轴向高度的升高,气泡会在内通道的中心区域聚合;燃料组件的角通道是气泡含量多的区域,会造成局部传热恶化,导致组件烧毁。  相似文献   

11.
铅基快堆由于较好的冷却剂固有安全性和燃料增殖效应而在核电中被逐渐关注,模块化铅基核电堆芯更能进一步提升堆芯的经济性。本文从堆芯核设计角度出发,分析了100 MW、300 MW、500 MW、700 MW和1 000 MW等不同热功率水平的堆芯分别采用UO2和U-10Zr合金燃料在2000EFPD的换料周期内的经济性。计算分析结果显示:在保持堆芯泄漏基本不变和相同寿期的情况下,堆芯功率水平与堆芯铀装量呈线性增加趋势,同时燃料利用率随堆芯功率水平和堆芯尺寸的增加而逐渐增加;UO2燃料堆芯适用于低功率水平(如100 MW)和较高功率水平(如1 000 MW)的堆芯装载,低功率水平下堆芯铀装量更少,高功率水平下堆芯增殖性能与堆芯能量输出匹配,更利于堆芯反应性控制;U-10Zr燃料堆芯适用于中等功率水平(如500 MW)的堆芯装载,在该功率水平和堆芯尺寸下,堆芯的增殖性能与堆芯能量输出基本匹配,能够充分发挥U-10Zr燃料的高增殖性能。本文通过对铅基模块化核电不同功率水平的经济性进行分析研究,为当前铅基模块化核电的单堆功率提出最佳经济性分析,为铅基模块...  相似文献   

12.
为深入研究影响自然循环铅基快堆一回路系统驱动力的关键因素,以自然循环铅基快堆SNCLFR-10为研究对象构建描述反应堆一回路自然循环稳态运行模型;从理论上量化分析冷/热池的热量传递、热源和热阱温度非线性分布、反应堆压力容器壁散热3种因素对自然循环能力的影响,并开展了相关数值模拟验证。结果表明,数值模拟结果与本研究理论计算值吻合较好;3种自然循环能力影响机制耦合作用将降低SNCLFR-10系统自然循环能力,导致自然循环流量与功率之间不再满足理论所得的1/3次方关系。   相似文献   

13.
为提高铅基堆中子学模拟的可靠性,基于启明星Ⅱ号铅基零功率反应堆,开展铅基堆相关核数据的入堆宏观基准检验研究。采用周期法测量堆芯反应性,进而获得有效增殖因数keff为1001 14±0000 07。采用MCNP程序对铅基堆进行精细化建模,结合不同数据库内的中子评价核数据,计算实验燃料棒装载下的铅基堆芯的keff。比较结果可知,4种截面库计算的铅基堆keff模拟结果与实验结果吻合较好,最大相对偏差小于1%,其中,ENDF/B Ⅶ.1库的模拟结果与实验结果吻合最好,相对偏差和绝对偏差分别为025%和251 pcm。通过计算关键材料元素核数据引起keff的变化量,可知铅元素核数据引起的堆芯keff结果的波动量最大,在CENDL 31和JENDL 40中的铅元素引起keff的波动值分别为219 pcm和166 pcm。  相似文献   

14.
为预判三代核电先进堆型热管段温度计设置的合理性,本研究采用计算流体动力学(CFD)分析技术,构建了堆芯出口至热管段温度计位置的分析模型,开展了不同堆芯出口温度、流量分布条件下,热管段冷却剂温度搅混特性及搅混及温度测量特性。研究结果表明,热管段冷却剂出现明显的温度分层现象,但温度计测量的平均值相对其所在管道截面平均温度的偏差较小。因此,三代核电先进堆型热管段温度计设置合理,可有效测量冷却剂温度。   相似文献   

15.
目前商用压水堆积累了大量的长寿命高放废物,放射毒性强,衰变时间漫长,对环境和人类构成了长期威胁,作为6种第四代核能系统堆型中的一种,铅基冷却快堆在减少长寿命高放废物产生方面具有优势。基于此本文提出了一种热功率为300 MW的铅-铋合金冷却快堆设计。利用MCNP程序对反应堆堆芯进行建模并计算了堆芯在寿期初的主要物理参数,详细分析了燃耗过程中长寿命高放核素的积累量,并与一般压水堆长寿命高放核素的积累量进行了比较。结果表明,对主要关心的次锕系核素,铅-铋合金冷却快堆的产生量远小于压水堆的,而长寿命裂变产物的产生量与压水堆的相当。总体来说,铅-铋合金冷却快堆产生的长寿命高放废物总量小于压水堆的,可看出铅-铋合金冷却快堆在减少长寿命高放废物产生方面更具有竞争性。  相似文献   

16.
行波堆是一种先进的核能系统,可以通过堆内易裂变核素和可转换核素的优化布置,在寿期内能够保持易裂变核素的总量恒定从而维持堆芯有效增殖因子稳定。铅基材料作为冷却剂不仅具有优良的热工性能和化学安全特性,而且具有更低的中子慢化能力和更小的俘获截面,尤其是208Pb,因此采用208Pb冷却的行波堆具有更优的物理性能。本文提出了一种208Pb冷却的行波堆堆芯初步设计方案,并使用Super MC程序对方案进行计算和分析,其有效增殖因子(keff)在寿期内变化较小,稳态时为1.02左右,功率分布曲线随时间沿着轴向移动。其次,基于该堆芯设计方案,研究了不同点火区长度和富集度以及反射层材料对铅冷行波堆堆芯性能的影响。结果表明,点火区长度和富集度对铅冷行波堆稳态有效增殖因子无明显影响,但对功率分布影响较大;反射层材料对堆芯影响较大,208Pb作为反射层时,稳态时堆芯有效增殖因子最大,堆芯物理性能最佳。  相似文献   

17.
本文基于多通道热工模型与功率计算模型,在快堆分析程序SARAX的基础上开发了可用于分析小型铅铋冷却快堆在无保护超功率事故、无保护失流事故及无保护失热阱事故发生时瞬态安全特性的计算功能,并利用该程序计算了在不同事故情况下,堆芯反应性、功率以及热工参数随时间的变化,分析评价了堆芯的中子学和热工水力学性能。结果表明所设计的堆芯在发生事故时具有固有安全特性。  相似文献   

18.
热管堆具有长寿期、高可靠性等优势,是当下空间核反应堆的研究焦点之一。为研究热管堆瞬态过程中的核热耦合现象,本文基于半物理仿真技术,搭建了针对热管反应堆堆芯缩比模块的核热耦合实验平台,通过实验模块测量了堆芯缩比模块的温度分布,在仿真模块中基于点堆模型计算了输出功率随时间的变化情况。通过耦合实验模块和仿真模块,探索了瞬态条件下堆芯缩比模块核热耦合特性,分析了引入不同初始反应性时堆芯温度、加热功率和剩余反应性的瞬态演变过程,揭示了系统热容量造成的温度迟滞变化效应,即热惯性现象。结果表明,堆芯缩比模块的热惯性随引入的初始反应性的增大及初始功率水平的增加而减小,且与基体材料的热扩散率呈反比。  相似文献   

19.
针对池式钠冷快堆特点,建立了三维系统分析模型,并结合热分层现象演化机制,提出了准确模拟热分层的关键处理方法,包括能量源项处理、三维动量方程对流项处理及三维空间进口效应处理。在此基础上,采用KALIMER及MONJU热分层实验对所开发的三维系统分析模型进行验证。结果表明模型有效解决了池式钠冷快堆三维热工水力分析的难题,实现了对钠池内温度场瞬态变化及热分层现象演化进程的快速准确模拟,同时也能够确定热分层过程中池式结构表面热应力最大位置,为池式快堆安全设计提供参考。   相似文献   

20.
小型铅铋快堆的非能动余热排出系统(PRHRS)主要是为应对全厂断电(SBO)事故,但目前并不确定该PRHRS能否有效带走堆芯衰变热以保证堆芯安全,因此开展了数值分析研究评价PRHRS的余热排出能力。本文使用RELAP5 4.0程序开展了小型铅铋快堆SBO事故热工水力分析,首先进行稳态计算,之后将稳态结果作为初值进行瞬态计算。研究结果表明:在整个SBO事故中,包壳峰值温度最高为820 K,主容器与保护容器壁面最高温度分别为792 K和769 K,均未超过安全限值,表明此PRHRS可有效应对小型铅铋快堆SBO事故。本文研究可为小型铅铋快堆PRHRS的工程设计奠定技术基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号