首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.  相似文献   

2.
Tanshinone IIA (Tan-IIA), one of the major lipophilic components isolated from the root of Salviae Miltiorrhizae, has been found to exhibit anticancer activity in various cancer cells. We have demonstrated that Tan-IIA induces apoptosis in several human cancer cells through caspase- and mitochondria-dependent pathways. Here we explored the anticancer effect of Tan-IIA in human bladder cancer cell lines. Our results showed that Tan-IIA caused bladder cancer cell death in a time- and dose-dependent manner. Tan-IIA induced apoptosis through the mitochondria-dependent pathway in these bladder cancer cells. Tan-IIA also suppressed the migration of bladder cancer cells as revealed by the wound healing and transwell assays. Finally, combination therapy of Tan-IIA with a lower dose of cisplatin successfully killed bladder cancer cells, suggesting that Tan-IIA can serve as a potential anti-cancer agent in bladder cancer.  相似文献   

3.
Cancer stemness evinces interest owing to the resulting malignancy and poor prognosis. We previously demonstrated that hepatic stem cell-like hepatocellular carcinoma (HpSC-HCC) is associated with high vascular invasion and poor prognosis. Dickkopf-1 (DKK-1), a Wnt signaling regulator, is highly expressed in HpSC-HCC. Here, we assessed the diagnostic and prognostic potential of serum DKK-1. Its levels were significantly higher in 391 patients with HCC compared with 205 patients with chronic liver disease. Receiver operating characteristic curve analysis revealed the optimal cutoff value of DKK-1 to diagnose HCC and predict the 3-year survival as 262.2 and 365.9 pg/mL, respectively. HCC patients with high-serum DKK-1 levels showed poor prognosis. We evaluated the effects of anti-DKK-1 antibody treatment on tumor growth in vivo and of recombinant DKK-1 on cell proliferation, invasion, and angiogenesis in vitro. DKK-1 knockdown decreased cancer cell proliferation, migration, and invasion. DKK-1 supplementation promoted angiogenesis in vitro; this effect was abolished by an anti-DKK-1 antibody. Co-injection of the anti-DKK-1 antibody with Huh7 cells inhibited their growth in NOD/SCID mice. Thus, DKK-1 promotes proliferation, migration, and invasion of HCC cells and activates angiogenesis in vascular endothelial cells. DKK-1 is a prognostic biomarker for HCC and a functional molecule for targeted therapy.  相似文献   

4.
5.
6.
7.
Despite liver cancer being the second-leading cause of cancer-related death worldwide, few systemic drugs have been approved. Sorafenib, the first FDA-approved systemic drug for unresectable hepatocellular carcinoma (HCC), is limited by resistance. However, the precise mechanisms underlying this phenomenon are unknown. Since fibrinogen-like 1 (FGL1) is involved in HCC progression and upregulated after anticancer therapy, we investigated its role in regulating sorafenib resistance in HCC. FGL1 expression was assessed in six HCC cell lines (HepG2, Huh7, Hep3B, SNU387, SNU449, and SNU475) using western blotting. Correlations between FGL1 expression and sorafenib resistance were examined by cell viability, colony formation, and flow cytometry assays. FGL1 was knocked-down to confirm its effects on sorafenib resistance. FGL1 expression was higher in HepG2, Huh7, and Hep3B cells than in SNU387, SNU449, and SNU475 cells; high FGL1-expressing HCC cells showed a lower IC50 and higher sensitivity to sorafenib. In Huh7 and Hep3B cells, FGL1 knockdown significantly increased colony formation by 61% (p = 0.0013) and 99% (p = 0.0002), respectively, compared to that in controls and abolished sorafenib-induced suppression of colony formation, possibly by modulating ERK and autophagy signals. Our findings demonstrate that sorafenib resistance mediated by FGL1 in HCC cells, suggesting FGL1 as a potential sorafenib-resistance biomarker and target for HCC therapy.  相似文献   

8.
Glioblastoma multiforme (GBM) is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK) is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP)-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.  相似文献   

9.
Hypoxia in non-small cell lung cancer (NSCLC) affects cancer progression, metastasis and metabolism. We previously showed that FAM13A was induced by hypoxia in NSCLC but the biological function of this gene has not been fully elucidated. This study aimed to investigate the role of hypoxia-induced FAM13A in NSCLC progression and metastasis. Lentiviral shRNAs were used for FAM13A gene silencing in NSCLC cell lines (A549, CORL-105). MTS assay, cell tracking VPD540 dye, wound healing assay, invasion assay, BrdU assay and APC Annexin V staining assays were performed to examine cell proliferation ability, migration, invasion and apoptosis rate in NSCLC cells. The results of VPD540 dye and MTS assays showed a significant reduction in cell proliferation after FAM13A knockdown in A549 cells cultured under normal and hypoxia (1% O2) conditions (p < 0.05), while the effect of FAM13A downregulation on CORL-105 cells was observed after 96 h exposition to hypoxia. Moreover, FAM13A inhibition induced S phase cell cycle arrest in A549 cells under hypoxia conditions. Silencing of FAM13A significantly suppressed migration of A549 and CORL-105 cells in both oxygen conditions, especially after 72 and 96 h (p < 0.001 in normoxia, p < 0.01 after hypoxia). It was showed that FAM13A reduction resulted in disruption of the F-actin cytoskeleton altering A549 cell migration. Cell invasion rates were significantly decreased in A549 FAM13A depleted cells compared to controls (p < 0.05), mostly under hypoxia. FAM13A silencing had no effect on apoptosis induction in NSCLC cells. In the present study, we found that FAM13A silencing has a negative effect on proliferation, migration and invasion activity in NSCLC cells in normal and hypoxic conditions. Our data demonstrated that FAM13A depleted post-hypoxic cells have a decreased cell proliferation ability and metastatic potential, which indicates FAM13A as a potential therapeutic target in lung cancer.  相似文献   

10.
Cold atmospheric pressure plasma (CAP) and plasma-activated medium (PAM) induce cell death in diverse cancer cells and may function as powerful anti-cancer agents. The main components responsible for the selective anti-cancer effects of CAP and PAM remain elusive. CAP or PAM induces selective cell death in hepatocellular carcinoma cell lines Hep3B and Huh7 containing populations with cancer stem cell markers. Here, we investigated the major component(s) of CAP and PAM for mediating the selective anti-proliferative effect on Hep3B and Huh7 cells. The anti-proliferative effect of CAP was mediated through the medium; however, the reactive oxygen species scavenger N-acetyl cysteine did not suppress PAM-induced cell death. Neither high concentrations of nitrite or nitrite/nitrate nor a low concentration of H2O2 present in the PAM containing sodium pyruvate affected the viability of Hep3B and Huh7 cells. Inhibitors of singlet oxygen, superoxide anions, and nitric oxide retained the capacity of PAM to induce anti-cancer effects. The anti-cancer effect was largely blocked in the PAM prepared by placing an aluminum metal mesh, but not a dielectric PVC mesh, between the plasma source and the medium. Hence, singlet oxygen, hydrogen peroxide, nitric oxide, and nitrite/nitrate are not the main factors responsible for PAM-mediated selective death in Hep3B and Huh7 cells. Other factors, such as charged particles including various ions in CAP and PAM, may induce selective anti-cancer effects in certain cancer cells.  相似文献   

11.
Targeting protein for Xenopus kinesin-like protein 2 (TPX2), a microtubule-associated protein, impacts spindle assembly in human cells. Several studies have demonstrated that TPX2 is overexpressed in different types of human cancers and promotes tumor growth and metastasis. In this study, we found that the expression level of TPX2 was obviously higher in hepatocellular carcinoma (HCC) tissues than in matched nontumor tissues. Elevated expressions of TPX2 mRNA were observed in all HCC cell lines (HepG2, Hep3B, SMMC-7721, Bel-7402 and Huh7) as compared with that in a non-transformed hepatic cell line (LO2). Clinical analysis indicated that the positive expression of TPX2 was significantly correlated with venous infiltration, high Edmondson-Steiner grading and advanced TNM tumor stage in HCC. Furthermore, TPX2 was a novel prognostic marker for predicting 5-year overall survival (OS) and disease-free survival (DFS) of HCC patients. In vitro studies found that TPX2 knockdown significantly inhibited cell proliferation and viability in both Hep3B and HepG2 cells. Moreover, TPX2 knockdown obviously slowed down tumor growth in a nude mouse xenograft model. Otherwise, TPX2 knockdown prominently suppressed HCC cell invasion and migration. In conclusion, these results indicate that TPX2 may serve as a prognostic marker and promotes tumorigenesis and metastasis of HCC.  相似文献   

12.
CD26 has been reported as a marker for colorectal cancer stem cells endowed with tumor-initiating properties and capable of colorectal cancer (CRC) metastasis. In this study, we investigated the functional effect of CD26 on CRC angiogenesis and metastasis, and the potential underlying mechanism. The functional effects of CD26 overexpression or repression were determined by a wound healing experiment, and cell migration and invasion assays in vitro and in mouse models. Differentially expressed genes regulated by CD26 were identified by genome-wide mRNA expression array and validated by quantitative PCR. CD26 functionally regulated CRC cell migration and invasion in vitro and angiogenesis and metastasis in vivo. Genome-wide mRNA expression array and qPCR showed that MMP1 was up-regulated in CD26+ subpopulation, and a subsequent experiment demonstrated the regulatory effect of CD26 on MMP1 in CRC cell lines with CD26 repression or overexpression. Furthermore, overexpression of CAV1 abrogated the CD26-regulated MMP1 induction in CRC cell lines. This study demonstrated the functional roles of CD26 in inducing CRC migration, invasion, angiogenesis and metastasis and identified the potential involvement of MMP1 and CAV1 in such process. CD26 is an attractive therapeutic target for combating tumor progression to improve the prognosis of CRC patients.  相似文献   

13.
Sipholenol A, a sipholane triterpene isolated from the Red Sea sponge Callyspongia siphonella, has the ability to reverse multidrug resistance in cancer cells that overexpress P‐glycoprotein (P‐gp). Here, the antimigratory activity of sipholenol A and analogues are reported against the highly metastatic human breast cancer cell line MDA‐MB‐231 in a wound‐healing assay. Sipholenol A and sipholenone A were semisynthetically optimized using ligand‐based strategies to generate structurally diverse analogues in an attempt to maximize their antimigratory activity. A total of 22 semisynthetic ester, ether, oxime, and carbamate analogues were generated and identified by extensive one‐ and two‐dimensional NMR spectroscopy and high‐resolution mass spectrometry analyses. Sipholenol A 4β‐4‐chlorobenzoate and 19,20‐anhydrosipholenol A 4β‐4‐chlorobenzoate esters were the most potent of all tested analogues in the wound‐healing assay, with IC50 values of 5.3 and 5.9 μM , respectively. Generally, ester derivatives showed better antimigratory activities than the carbamate analogues. A KINOMEscan of 19,20‐anhydrosipholenol A 4β‐benzoate ester against 451 human protein kinases identified protein tyrosine kinase 6 (PTK6) as a potential target. In breast tumor cells, PTK6 promotes growth factor signaling and migration, and as such the semisynthetic sipholanes were evaluated for their ability to inhibit PTK6 phosphorylation in vitro. The two analogues with the highest antimigratory activities, sipholenol A 4β‐4‐chlorobenzoate and 19,20‐anhydrosipholenol A 4β‐4‐chlorobenzoate esters, also exhibited the most potent inhibition of PTK6 phosphorylation inhibition. None of the compounds exhibited cytotoxicity in a normal epithelial breast cell line. These derivatives were evaluated in an in vitro invasion assay, where sipholenol A succinate potently inhibited MDA‐MB‐231 cell invasion at 10 μM . These results highlight sipholane triterpenoids as novel antimigratory marine natural products with potential for further development as agents for the control of metastatic breast malignancies.  相似文献   

14.
15.
The use of natural compounds is promising in approaches to prevent and treat cancer. The long-term application of most currently employed chemotherapy techniques has toxic side effects. Eugenol, a phenolic phytochemical extracted from certain essential oils, has an anti-cancer effect. The modulation of autophagy can promote either the survival or apoptosis of cancer cells. Triple-negative (MDA-MB-231) and HER2 positive (SK-BR-3) breast cancer cell lines were treated with different doses of eugenol. Apoptosis was detected by a flow-cytometry technique, while autophagy was detected by acridine orange. Real-time PCR and Western blot assays were applied to investigate the effect of eugenol on the gene and protein expression levels of autophagy and apoptotic genes. Treating cells with different concentrations of eugenol significantly inhibited cell proliferation. The protein levels of AKT serine/threonine kinase 1 (AKT), forkhead box O3 (FOXO3a), cyclin dependent kinase inhibitor 1A (p21), cyclin-dependent kinase inhibitor (p27), and Caspase-3 and -9 increased significantly in Eugenol-treated cells. Eugenol also induced autophagy by upregulating the expression levels of microtubule-associated protein 1 light chain 3 (LC3) and downregulating the expression of nucleoporin 62 (NU p62). Eugenol is a promising natural anti-cancer agent against triple-negative and HER2-positive breast cancer. It appears to work by targeting the caspase pathway and by inducing autophagic cell death.  相似文献   

16.
Metformin, apart from its glucose-lowering properties, has also been found to demonstrate anti-cancer properties. Anti-cancer efficacy of metformin depends on its uptake in cancer cells, which is mediated by plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs). This study presents an analysis of transporter mediated cellular uptake of ten sulfonamide-based derivatives of metformin in two breast cancer cell lines (MCF-7 and MDA-MB-231). Effects of these compounds on cancer cell growth inhibition were also determined. All examined sulfonamide-based analogues of metformin were characterized by greater cellular uptake in both MCF-7 and MDA-MB-231 cells, and stronger cytotoxic properties than those of metformin. Effective intracellular transport of the examined compounds in MCF-7 cells was accompanied by high cytotoxic activity. For instance, compound 2 with meta-methyl group in the benzene ring inhibited MCF-7 growth at micromolar range (IC50 = 87.7 ± 1.18 µmol/L). Further studies showed that cytotoxicity of sulfonamide-based derivatives of metformin partially results from their ability to induce apoptosis in MCF-7 and MDA-MB-231 cells and arrest cell cycle in the G0/G1 phase. In addition, these compounds were found to inhibit cellular migration in wound healing assay. Importantly, the tested biguanides are more effective in MCF-7 cells at relatively lower concentrations than in MDA-MB-231 cells, which proves that the effectiveness of transporter-mediated accumulation in MCF-7 cells is related to biological effects, including MCF-7 cell growth inhibition, apoptosis induction and cell cycle arrest. In summary, this study supports the hypothesis that effective transporter-mediated cellular uptake of a chemical molecule determines its cytotoxic properties. These results warrant a further investigation of biguanides as putative anti-cancer agents.  相似文献   

17.
目的探讨沉默整合素连接激酶(integrin-linked kinase,ILK)基因表达对人舌鳞癌Tb细胞生长、迁移和侵袭能力的影响。方法将ILK siRNA表达质粒和阴性对照质粒在脂质体介导下转染人舌鳞癌Tb细胞,稳定表达细胞株分别命名为Tb siILK和Tb vector组,并设正常Tb细胞对照组(Tb组)。Western blot法检测细胞中ILK蛋白的表达;细胞免疫荧光法检测细胞中ILK、p-Akt和p-GSK3β的表达;光镜和HE染色观察细胞的形态学变化;划痕试验检测细胞的迁移能力;Transwell法检测细胞的侵袭能力;流式细胞术检测细胞的细胞周期和凋亡情况;MTT法检测细胞的增殖活力;Western blot法检测沉默ILK基因后细胞中p-Akt、Akt、p-GSK3β、GSK3α/β、Snail的表达。结果与Tb和Tb vector组相比,Tb siILK组细胞中ILK蛋白的表达水平显著降低(P<0.01);ILK、p-Akt、p-GSK3β在胞质中的荧光信号明显减弱;大部分细胞的上皮形态特征更为明显;细胞的迁移距离和侵袭细胞数显著减少(P<0.05);G2-M期和G0-G1期细胞比例均显著增加(P<0.01);细胞的增殖活力显著减低;ILK基因沉默后,细胞中p-Akt、p-GSK3β和Snail蛋白的表达水平显著降低(P<0.05)。3组细胞的凋亡率差异无统计学意义(P>0.05)。结论抑制ILK基因的表达可通过Akt/GSK3β/Snail途径显著抑制人舌鳞癌Tb细胞的生长、迁移和侵袭能力,ILK有望作为治疗人舌鳞癌的靶基因。  相似文献   

18.
19.
The circadian clock coordinates biological and physiological functions to day/night cycles. The perturbation of the circadian clock increases cancer risk and affects cancer progression. Here, we studied how BMAL1 knockdown (BMAL1-KD) by shRNA affects the epithelial–mesenchymal transition (EMT), a critical early event in the invasion and metastasis of colorectal carcinoma (CRC). In corresponding to a gene set enrichment analysis, which showed a significant enrichment of EMT and invasive signatures in BMAL1_high CRC patients as compared to BMAL1_low CRC patients, our results revealed that BMAL1 is implicated in keeping the epithelial–mesenchymal equilibrium of CRC cells and influences their capacity of adhesion, migration, invasion, and chemoresistance. Firstly, BMAL1-KD increased the expression of epithelial markers (E-cadherin, CK-20, and EpCAM) but decreased the expression of Twist and mesenchymal markers (N-cadherin and vimentin) in CRC cell lines. Finally, the molecular alterations after BMAL1-KD promoted mesenchymal-to-epithelial transition-like changes mostly appeared in two primary CRC cell lines (i.e., HCT116 and SW480) compared to the metastatic cell line SW620. As a consequence, migration/invasion and drug resistance capacities decreased in HCT116 and SW480 BMAL1-KD cells. Together, BMAL1-KD alerts the delicate equilibrium between epithelial and mesenchymal properties of CRC cell lines, which revealed the crucial role of BMAL1 in EMT-related CRC metastasis and chemoresistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号