首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic syndrome (MetSyn) is a major health problem affecting approximately 25% of the worldwide population. Since the gut microbiota is highly connected to the host metabolism, several recent studies have emerged to characterize the role of the microbiome in MetSyn development and progression. To this end, our study aimed to identify the microbiome patterns which distinguish MetSyn from type 2 diabetes mellitus (T2DM). We performed 16S rRNA amplicon sequencing on a cohort of 70 individuals among which 40 were MetSyn patients. The microbiome of MetSyn patients was characterised by reduced diversity, loss of butyrate producers (Subdoligranulum, Butyricicoccus, Faecalibacterium prausnitzii) and enrichment in the relative abundance of fungal populations. We also show a link between the gut microbiome and lipid metabolism in MetSyn. Specifically, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) display a positive effect on gut microbial diversity. When interrogating the signature of gut microbiota in a subgroup of patients harbouring both MetSyn and T2DM conditions, we observed a significant increase in taxa such as Bacteroides, Clostridiales, and Erysipelotrichaceae. This preliminary study shows for the first time that T2DM brings unique signatures of gut microbiota in MetSyn patients. We also highlight the impact of metformin treatment on the gut microbiota. Metformin administration was linked to changes in Prevotellaceae, Rickenellaceae, and Clostridiales. Further research focusing on the microbiome-metabolome patterns is needed to clarify the exact association of various gut microbial communities with the progression of T2DM and the occurrence of various complications in MetSyn patients.  相似文献   

2.
Alterations of gut microbiota have been identified before clinical manifestation of type 1 diabetes (T1D). To identify the associations amongst gut microbiome profile, metabolism and disease markers, the 16S rRNA-based microbiota profiling and 1H-NMR metabolomic analysis were performed on stool samples of 52 T1D patients at onset, 17 T1D siblings and 57 healthy subjects (CTRL). Univariate, multivariate analyses and classification models were applied to clinical and -omic integrated datasets. In T1D patients and their siblings, Clostridiales and Dorea were increased and Dialister and Akkermansia were decreased compared to CTRL, while in T1D, Lachnospiraceae were higher and Collinsella was lower, compared to siblings and CTRL. Higher levels of isobutyrate, malonate, Clostridium, Enterobacteriaceae, Clostridiales, Bacteroidales, were associated to T1D compared to CTRL. Patients with higher anti-GAD levels showed low abundances of Roseburia, Faecalibacterium and Alistipes and those with normal blood pH and low serum HbA1c levels showed high levels of purine and pyrimidine intermediates. We detected specific gut microbiota profiles linked to both T1D at the onset and to diabetes familiarity. The presence of specific microbial and metabolic profiles in gut linked to anti-GAD levels and to blood acidosis can be considered as predictive biomarker associated progression and severity of T1D.  相似文献   

3.
The prevalence of type 2 diabetes mellitus (T2D) is alarmingly increasing worldwide, urgently calling for a better understanding of the underlying mechanisms in order to step up prevention and improve therapeutic approaches. It is becoming evident that the gut microbiota seem to have an endless capacity to impact T2D. In this study, we profile the gut microbiome patterns in T2D patients from Romania, by using quantitative Real-Time PCR and next generation sequencing. We enrolled a total of 150 individuals (105 T2D patients, 50 of them without metformin treatment and 45 healthy volunteers). The levels of potentially beneficial butyrate-producing bacteria were significantly reduced, while potentially pathogenic microorganisms such as Enterobacteriaceae and Fusobacterium were enriched in T2D patients. We evaluated the correlation between clinical parameters and gut microbiota and identified the genera Bacteroides, Alistipes, Dialister, Bilophila and Sutterella as possible detrimental factors in T2D. Our findings suggest that the gut microbiota may be a potential target in novel approaches to halt the development of T2D-associated complications.  相似文献   

4.
Human lifestyle and dietary behaviors contribute to disease onset and progression. Neurodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element underlying NDD development and prognosis. In particular, an inflammation-associated microbiome plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dysbiotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis, ameliorates the inflammatory microbiome. This intimate pathological link between the gut and NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evaluation at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA represents a potent therapeutic target for treating NDDs.  相似文献   

5.
Diabetes is a metabolic disorder characterized by lower responsiveness of tissues to insulin and consequent large variations in circulating levels of glucose. This fluctuation has harmful effects as both hyperglycemia and hypoglycemia can be very injurious. The causes of diabetes are varied but the consequences are rather uniform. Dietary factors are important especially in adult onset type 2 diabetes (T2D) while type 1 diabetes (T1D) is characterized by having a stronger heritable component and involving autoimmune attach on pancreatic beta cells. This review is focused on the relation of the bacterial components found within the intestine, to the establishment and maintenance of diabetes. The precise composition of the gut microbiome is increasingly recognized as a factor in organismic health and its interaction with a variety of disease states has been described. This is especially marked in the case of diabetes since the nature of the diet is an important factor in establishing both the microbiome and the incidence of diabetes. The bidirectional nature of this relationship is discussed. The effects of disease that lead to altered microbiomal composition together with aberrant metabolic changes are also included. Emphasis is given to the important role of short chain fatty acids (SCFAs) as mediators of the microbiome-diabetes relation.  相似文献   

6.
Chronic low-grade inflammation is a hallmark of aging, which is now coined as inflamm-aging. Inflamm-aging contributes to many age-associated diseases such as obesity, type 2 diabetes, cardiovascular disease, and inflammatory bowel disease (IBD). We have shown that gut hormone ghrelin, via its receptor growth hormone secretagogue receptor (GHS-R), regulates energy metabolism and inflammation in aging. Emerging evidence suggests that gut microbiome has a critical role in intestinal immunity of the host. To determine whether microbiome is an integral driving force of GHS-R mediated immune-metabolic homeostasis in aging, we assessed the gut microbiome profiles of young and old GHS-R global knockout (KO) mice. While young GHS-R KO mice showed marginal changes in Bacteroidetes and Firmicutes, aged GHS-R KO mice exhibited reduced Bacteroidetes and increased Firmicutes, featuring a disease-susceptible microbiome profile. To further study the role of GHS-R in intestinal inflammation in aging, we induced acute colitis in young and aged GHS-R KO mice using dextran sulfate sodium (DSS). The GHS-R KO mice showed more severe disease activity scores, higher proinflammatory cytokine expression, and decreased expression of tight junction markers. These results suggest that GHS-R plays an important role in microbiome homeostasis and gut inflammation during aging; GHS-R suppression exacerbates intestinal inflammation in aging and increases vulnerability to colitis. Collectively, our finding reveals for the first time that GHS-R is an important regulator of intestinal health in aging; targeting GHS-R may present a novel therapeutic strategy for prevention/treatment of aging leaky gut and inflammatory bowel disease.  相似文献   

7.
8.
Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration, both of which increase the risk and accelerate the progression of Alzheimer’s disease (AD). The gut microbiome is an essential modulator of the immune system, impacting the brain. AD has been related with reduced diversity and alterations in the community composition of the gut microbiota. This study aimed to determine whether the gut microbiota from AD mice exacerbates neurological deficits after TBI in control mice. We prepared fecal microbiota transplants from 18 to 24 month old 3×Tg-AD (FMT-AD) and from healthy control (FMT-young) mice. FMTs were administered orally to young control C57BL/6 (wild-type, WT) mice after they underwent controlled cortical impact (CCI) injury, as a model of TBI. Then, we characterized the microbiota composition of the fecal samples by full-length 16S rRNA gene sequencing analysis. We collected the blood, brain, and gut tissues for protein and immunohistochemical analysis. Our results showed that FMT-AD administration stimulates a higher relative abundance of the genus Muribaculum and a decrease in Lactobacillus johnsonii compared to FMT-young in WT mice. Furthermore, WT mice exhibited larger lesion, increased activated microglia/macrophages, and reduced motor recovery after FMT-AD compared to FMT-young one day after TBI. In summary, we observed gut microbiota from AD mice to have a detrimental effect and aggravate the neuroinflammatory response and neurological outcomes after TBI in young WT mice.  相似文献   

9.
Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood–brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin–angiotensin–aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.  相似文献   

10.
Gestational diabetes mellitus (GDM), one of the most common endocrine pathologies during pregnancy, is defined as any degree of glucose intolerance with onset or first discovery in the perinatal period. Physiological changes that occur in pregnant women can lead to inflammation, which promotes insulin resistance. In the general context of worldwide increasing obesity in young females of reproductive age, GDM follows the same ascending trend. Changes in the intestinal microbiome play a decisive role in obesity and the development of insulin resistance and chronic inflammation, especially in patients with type 2 diabetes mellitus (T2D). To date, various studies have also associated intestinal dysbiosis with metabolic changes in women with GDM. Although host metabolism in women with GDM has not been fully elucidated, it is of particular importance to analyze the available data and to discuss the actual knowledge regarding microbiome changes with potential impact on the health of pregnant women and newborns. We analyzed peer-reviewed journal articles available in online databases in order to summarize the most recent findings regarding how variations in diet and metabolic status of GDM patients can contribute to alteration of the gut microbiome, in the same way that changes of the gut microbiota can lead to GDM. The most frequently observed alteration in the microbiome of patients with GDM was either an increase of the Firmicutes phylum, respectively, or a decrease of the Bacteroidetes and Actinobacteria phyla. Gut dysbiosis was still present postpartum and can impact the development of the newborn, as shown in several studies. In the evolution of GDM, probiotic supplementation and regular physical activity have the strongest evidence of proper blood glucose control, favoring fetal development and a healthy outcome for the postpartum period. The current review aims to summarize and discuss the most recent findings regarding the correlation between GDM and dysbiosis, and current and future methods for prevention and treatment (lifestyle changes, pre- and probiotics administration). To conclude, by highlighting the role of the gut microbiota, one can change perspectives about the development and progression of GDM and open up new avenues for the development of innovative therapeutic targets in this disease.  相似文献   

11.
Background: Obesity is one of the main health problems in the world today, and dysbiosis seems to be one of the factors involved. The aim of this study was to examine the impact of synbiotic supplementation on obesity and the microbiota in ob/ob mice. Twenty animals were divided into four groups: obese treated (OT), obese control (OC), lean treated (LT) and lean control (LC). All animals received a standard diet for 8 weeks. The treated groups received a synbiotic (Simbioflora-Invictus Farmanutrição Ltd., Sao Paulo, Brazil) in water, while the nontreated groups received only water. After 8 weeks, all animals were sacrificed, and gut tissue and stool samples were collected for mRNA isolation and microbiota analysis, respectively. β-Catenin, occludin, cadherin and zonulin in the gut tissue were analyzed via RT-qPCR. Microbiome DNA was extracted from stool samples and sequenced using an Ion PGM Torrent platform. Results: Synbiotic supplementation reduced body weight gain in the OT group compared with the OC group (p = 0.0398) and was associated with an increase in Enterobacteriaceae (p = 0.005) and a decrease in Cyanobacteria (p = 0.047), Clostridiaceae (p = 0.026), Turicibacterales (p = 0.005) and Coprococcus (p = 0.047). On the other hand, a significant reduction in Sutterella (p = 0.009) and Turicibacter (p = 0.005) bacteria was observed in the LT group compared to the LC group. Alpha and beta diversities were different among all treated groups. β-Catenin gene expression was significantly decreased in the gut tissue of the OT group (p ≤ 0.0001) compared to the other groups. No changes were observed in occludin, cadherin or zonulin gene expression in the gut tissue. Conclusions: Synbiotic supplementation prevents excessive weight gain, modulates the gut microbiota, and reduces β-catenin expression in ob/ob mice.  相似文献   

12.
The mechanism underlying the allergy-protective effects of raw cow’s milk is still unknown, but the modulation of the gut microbiome may play a role. The effects of consuming raw cow’s milk or processed milk on fecal microbial communities were therefore characterized in an experimental murine model. C3H/HeOuJ mice were treated with raw milk, pasteurized milk, skimmed raw milk, pasteurized milk supplemented with alkaline phosphatase (ALP), or phosphate-buffered saline (PBS) for eight days prior to sensitization and challenge with ovalbumin (OVA). Fecal samples were collected after milk exposure and after OVA sensitization, and microbiomes were characterized using 16S ribosomal RNA gene amplicon sequencing. Treatment with raw milk prior to OVA sensitization increased the relative abundance of putative butyrate-producing bacteria from the taxa Lachnospiraceae UCG-001, Lachnospiraceae UCG-008, and Ruminiclostridium 5 (Clostridial clusters XIVa and IV), while it decreased the relative abundance of Proteobacterial genera such as Parasutterella, a putative pro-inflammatory bacterial genus. This effect was observed after eight days of raw milk exposure and became more pronounced five weeks later, after allergic sensitization in the absence of milk. Similar trends were observed after treatment with skimmed raw milk. Conversely, the feeding of pasteurized milk led to a loss of allergy protection and a putative dysbiotic microbiome. The addition of ALP to pasteurized milk restored the protective effect observed with raw milk and mitigated some of the microbial community alterations associated with milk pasteurization. Raw milk-induced protection against food allergic symptoms in mice is accompanied by an increased relative abundance of putative butyrate-producing Clostridiales and a decreased relative abundance of putative pro-inflammatory Proteobacteria. Given the safety concerns regarding raw milk consumption, this knowledge is key for the development of new, microbiologically safe, preventive strategies to reduce the incidence of allergic diseases.  相似文献   

13.
Type 1 diabetes (T1D) is a multifactorial autoimmune disease driven by T-cells against the insulin-producing islet β-cells, resulting in a marked loss of β-cell mass and function. Although a genetic predisposal increases susceptibility, the role of epigenetic and environmental factors seems to be much more significant. A dysbiotic gut microbial profile has been associated with T1D patients. Moreover, new evidence propose that perturbation in gut microbiota may influence the T1D onset and progression. One of the prominent features in clinically silent phase before the onset of T1D is the presence of a microbiota characterized by low numbers of commensals butyrate producers, thus negatively influencing the gut permeability. The loss of gut permeability leads to the translocation of microbes and microbial metabolites and could lead to the activation of immune cells. Moreover, microbiota-based therapies to slow down disease progression or reverse T1D have shown promising results. Starting from this evidence, the correction of dysbiosis in early life of genetically susceptible individuals could help in promoting immune tolerance and thus in reducing the autoantibodies production. This review summarizes the associations between gut microbiota and T1D for future therapeutic perspectives and other exciting areas of research.  相似文献   

14.
An emerging body of literature demonstrates differences in the gut microbiome (GMB) of patients with major depressive disorder (MDD) compared to healthy controls (HC), as well as the potential benefits of prebiotic, probiotic, and synbiotic treatment. We conducted a systematic review of 24 observational studies (n = 2817), and 19 interventional trials (n = 1119). We assessed alpha diversity, beta diversity, and taxa abundance changes in patients with MDD relative to HC, as well as the effect of prebiotics, probiotics, and synbiotics on depressive symptoms in individuals with clinical or subclinical depression. We observed no significant differences in alpha diversity but a significant difference in beta diversity between patients with MDD and HC. There were fluctuations in the abundance of specific taxa in patients with MDD relative to HC. Probiotic and synbiotic, but not prebiotic, treatment showed a modest benefit in reducing depressive symptoms in patients with MDD over four to nine weeks. The GMB profiles of patients with MDD differ significantly from HC, but further studies are needed to elucidate the benefits of prebiotic, probiotic and synbiotic treatments relative to antidepressants and over longer follow-up before these therapies are implemented into clinical practice.  相似文献   

15.
Coeliac disease (CD) and Type 1 diabetes mellitus (T1DM) are immune-mediated diseases. Emerging evidence suggests that dysbiosis in the gut microbiome plays a role in the pathogenesis of both diseases and may also be associated with the development of neuropathy. The primary goal in this cross-sectional pilot study was to identify whether there are distinct gut microbiota alterations in children with CD (n = 19), T1DM (n = 18) and both CD and T1DM (n = 9) compared to healthy controls (n = 12). Our second goal was to explore the relationship between neuropathy (corneal nerve fiber damage) and the gut microbiome composition. Microbiota composition was determined by 16S rRNA gene sequencing. Corneal confocal microscopy was used to determine nerve fiber damage. There was a significant difference in the overall microbial diversity between the four groups with healthy controls having a greater microbial diversity as compared to the patients. The abundance of pathogenic proteobacteria Shigella and E. coli were significantly higher in CD patients. Differential abundance analysis showed that several bacterial amplicon sequence variants (ASVs) distinguished CD from T1DM. The tissue transglutaminase antibody correlated significantly with a decrease in gut microbial diversity. Furthermore, the Bacteroidetes phylum, specifically the genus Parabacteroides was significantly correlated with corneal nerve fiber loss in the subjects with neuropathic damage belonging to the diseased groups. We conclude that disease-specific gut microbial features traceable down to the ASV level distinguish children with CD from T1DM and specific gut microbial signatures may be associated with small fiber neuropathy. Further research on the mechanisms linking altered microbial diversity with neuropathy are warranted.  相似文献   

16.
The prevalence of metabolic disorders, such as type 2 diabetes (T2D), obesity, and non-alcoholic fatty liver disease (NAFLD), which are common risk factors for cardiovascular disease (CVD), has dramatically increased worldwide over the last decades. Although dietary habit is the main etiologic factor, there is an imperfect correlation between dietary habits and the development of metabolic disease. Recently, research has focused on the role of the microbiome in the development of these disorders. Indeed, gut microbiota is implicated in many metabolic functions and an altered gut microbiota is reported in metabolic disorders. Here we provide evidence linking gut microbiota and metabolic diseases, focusing on the pathogenetic mechanisms underlying this association.  相似文献   

17.
18.
Cystic fibrosis (CF) disease leads to altered lung and gut microbiomes compared to healthy subjects. The magnitude of this dysbiosis is influenced by organ-specific microenvironmental conditions at different stages of the disease. However, how this gut-lung dysbiosis is influenced by Pseudomonas aeruginosa chronic infection is unclear. To test the relationship between CFTR dysfunction and gut-lung microbiome under chronic infection, we established a model of P. aeruginosa infection in wild-type (WT) and gut-corrected CF mice. Using 16S ribosomal RNA gene, we compared lung, stool, and gut microbiota of C57Bl/6 Cftr tm1UNCTgN(FABPCFTR) or WT mice at the naïve state or infected with P. aeruginosa. P. aeruginosa infection influences murine health significantly changing body weight both in CF and WT mice. Both stool and gut microbiota revealed significantly higher values of alpha diversity in WT mice than in CF mice, while lung microbiota showed similar values. Infection with P. aeruginosa did not changed the diversity of the stool and gut microbiota, while a drop of diversity of the lung microbiota was observed compared to non-infected mice. However, the taxonomic composition of gut microbiota was shown to be influenced by P. aeruginosa infection in CF mice but not in WT mice. This finding indicates that P. aeruginosa chronic infection has a major impact on microbiota diversity and composition in the lung. In the gut, CFTR genotype and P. aeruginosa infection affected the overall diversity and taxonomic microbiota composition, respectively. Overall, our results suggest a cross-talk between lung and gut microbiota in relation to P. aeruginosa chronic infection and CFTR mutation.  相似文献   

19.
Obesity is a major health problem. Compelling evidence supports the beneficial effects of probiotics on obesity. However, the anti-obesity effect of probiotics remains unknown. In this study, we investigated the anti-obesity effects and potential mechanisms of Lactiplantibacillus plantarum ATG-K2 using 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese mice. 3T3-L1 cells were incubated to determine the effect of lipid accumulation with lysate of L. plantarum ATG-K2. Mice were fed a normal fat diet or HFD with L. plantarum ATG-K2 and Orlistat for 8 weeks. L. plantarum ATG-K2 inhibited lipid accumulation in 3T3-L1 adipocytes, and reduced body weight gain, WAT weight, and adipocyte size in HFD-induced obese mice, concurrently with the downregulation of PPARγ, SREBP1c, and FAS and upregulation of PPARα, CTP1, UCP1, Prdm16, and ND5. Moreover, L. plantarum ATG-K2 decreased TG, T-CHO, leptin, and TNF-α levels in the serum, with corresponding gene expression levels in the intestine. L. plantarum ATG-K2 modulated the gut microbiome by increasing the abundance of the Lactobacillaceae family, which increased SCFA levels and branched SCFAs in the feces. L. plantarum ATG-K2 exhibited an anti-obesity effect and anti-hyperlipidemic effect in 3T3-L1 adipocytes and HFD-induced obese mice by alleviating the inflammatory response and regulating lipid metabolism, which may be influenced by modulation of the gut microbiome and its metabolites. Therefore, L. plantarum ATG-K2 can be a preventive and therapeutic agent for obesity.  相似文献   

20.
Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host–microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号