首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reinforcement effects of two nanofillers, i.e., multi-walled carbon nanotube (MWCNT) and vapor grown carbon fiber (VGCF), which are used at the interface of conventional CFRP laminates, and in epoxy bulk composites, have been investigated. When using the two nanofillers at the interface between two conventional CFRP sublaminates, the Mode-I interlaminar tensile strength and fracture toughness of CFRP laminates are improved significantly. The performance of VGCF is better than that of MWCNT in this case. For epoxy bulk composites, the two nanofillers play a similar role of good reinforcement in Young’s modulus and tensile strength. However, the Mode-I fracture toughness of epoxy/MWCNT is much better than that of epoxy/VGCF.  相似文献   

2.
不同层次界面对C/C复合材料断裂行为的影响   总被引:5,自引:0,他引:5  
采用快速化学液相气化渗透法制备了C/C复合材料;利用扫描电子显微镜观察了材料的断口形貌特征;研究了不同层次界面状态对C/C复合材料力学行为及断裂模式的影响. 研究表明:束内纤维与基体间结合要适度,既不能过强也不能过弱,保证材料具有高强度同时又具有一定塑韧性;当碳布层间或束间的基体热解碳与纤维柬表面之间残余孔隙量较多或者结合较弱时,则裂纹沿碳布层表面的纤维与基体热解碳之间扩展而分层;热解碳碳层面排列的越紧密,层面间的结合强度越高,则倾向于在基体热解碳内形成齐茬形断面;若碳层面之间存在过多间隙或结合较弱,则倾向于沿碳层面剥离而分层.  相似文献   

3.
Unidirectional SiC/SiC composites are prepared by nano-powder infiltration and transient eutectic-phase (NITE) process, using pyrolytic carbon (PyC)-coated Tyranno-SA SiC fibers as reinforcement and SiC nano-powder with sintering additives for matrix formation. The effects of two kinds of fiber volume fraction incorporating fabrication temperature were characterized on densification, microstructure and mechanical properties. Densification of the composites with low fiber volume fraction (appropriately 30 vol%) was developed even at lower fabrication temperature of 1800 °C, and then saturated at 3rd stage of matrix densification corresponding to classic liquid phase sintering. Hence, densification of the composites with high volume fraction (above 50 vol%) became restricted because the many fibers retarded the infiltration of SiC nano-powder at lower fabrication temperature of 1800 °C. When fabrication temperature increased by 1900 °C, densification of the composites was effectively enhanced in the intra-fiber-bundles and simultaneously the interaction between PyC interface and matrix was strengthened. SEM observation on the fracture surface revealed that fiber pull-out length was accordingly changed with fabrication temperature as well as fiber volume fraction, which dominated tensile fracture behaviors. Through NITE process, SiC/SiC composites with two fracture types were successfully developed by tailoring of appropriate fabrication temperature to fiber volume fraction as follows: (1) high ductility type and (2) high strength type.  相似文献   

4.
The dynamic tensile properties of carbon fiber (CF) composite loaded in the matrix-dominant direction are experimentally determined. In this study, thermoplastic epoxy resin is used as a matrix of the CF composite. A dynamic tensile test is performed using a tension-type split Hopkinson bar technique. The experimental results show that there are not linear relationships between tensile strength and strain rate in case of the 10°, 30° and 45° specimens, although the tensile strength of CF composite, whose matrix is typical thermosetting epoxy resin, linearly increases with the strain rate for all fiber orientation angles. From the fracture surface observation, it is found that the ductile fracture of the matrix can be observed only when 10° off-axis specimen is tested under dynamic loading condition. It is inferred that the softening of the thermoplastic epoxy resin in the vicinity of interface area takes place with increasing strain rate.  相似文献   

5.
Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of the most popular AM techniques, is the most widely used method for fabricating thermoplastic parts those are mainly used as rapid prototypes for functional testing with advantages of low cost, minimal wastage, and ease of material change. Due to the intrinsically limited mechanical properties of pure thermoplastic materials, there is a critical need to improve mechanical properties for FDM-fabricated pure thermoplastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form thermoplastic matrix carbon fiber reinforced plastic (CFRP) composites those could be directly used in the actual application areas, such as aerospace, automotive, and wind energy. This paper is going to present FDM of thermoplastic matrix CFRP composites and test if adding carbon fiber (different content and length) can improve the mechanical properties of FDM-fabricated parts. The CFRP feedstock filaments were fabricated from plastic pellets and carbon fiber powders for FDM process. After FDM fabrication, effects on the tensile properties (including tensile strength, Young's modulus, toughness, yield strength, and ductility) and flexural properties (including flexural stress, flexural modulus, flexural toughness, and flexural yield strength) of specimens were experimentally investigated. In order to explore the parts fracture reasons during tensile and flexural tests, fracture interface of CFRP composite specimens after tensile testing and flexural testing was observed and analyzed using SEM micrograph.  相似文献   

6.
The present paper proposes an approach to characterizing fibre/matrix (F/M) interface in carbon/carbon (C/C) composites with respect to both modes of loading that may be expected: opening or shearing. Push-out and tensile tests were used. The former tests involve the shearing mode whereas the latter ones involve the opening one. Push-out tests use a diamond indenter to load the fibres. The interface sliding shear stress was obtained from the load-fibre displacement curve. The tensile tests were conducted on specimens having fibres oriented at 90° with respect to loading direction in order to preferentially open the interfaces. Interface opening strength was extracted from the composite tensile stress–strain behaviour. The specimens were examined under load and after ultimate failure by optical microscopy (OM). The mechanical properties of the F/M interfaces were then discussed.  相似文献   

7.
In this study, chopped carbon fiber reinforced trans-1, 4-polyisoprene (TPI) was developed via a proposed new manufacturing process with the aim of improving weak mechanical properties of bulk TPI bulk. Specimens of the developed shape memory polymer (SMP) composites were fabricated with carbon fiber weight fraction of 5%, 7%, 9%, 11% and 13%, respectively. Measured are the effects of chopped carbon fiber and temperature on: (a) shape recovery ratio and rate; (b) stress–strain relationship; (c) maximum tensile stress, strain and Young’s modulus; and (d) maximum stress and residual strain under a constant strain cyclic loading. In addition, SEM micrographs were also presented to illustrate the fracture surface. The present experimental results show that the SMP with 7% carbon fiber weight fraction appears to perform best in all the tests. This indicates that the 7% carbon fiber weight fraction could be the optimum value for the SMP developed using the proposed manufacturing process.  相似文献   

8.
Carbon nanotube (CNT)-grafted carbon fibers (CFs) have emerged as new reinforcements for improving the mechanical properties of CF-reinforced composites but such enhancement in macroscale composites has not been realized. This paper reports a facile method for preparing CNT-grafted CFs and improving the tensile strength of their composites. A CNT/polyacrylonitrile solution was sprayed onto the surface of the CF woven fabrics, and the CNTs were grafted by a thermal treatment at 300 °C. CNT-grafted CF composites were fabricated using the CNT-grafted CF woven fabrics using a vacuum-assisted resin transfer molding process with epoxy resin. The CNT-grafted CF composite exhibited 22% enhancement in the tensile strength compared to that of the pristine CF composite. Fracture surfaces of the CNT-grafted CF composites showed that the grafted CNTs obstructed the propagation of micro-cracks and micro-delamination around the CFs and also yarn boundaries, resulting in improved tensile strength of CNT-grafted CF composites.  相似文献   

9.
To assess the effect of carbon nanotube (CNT) grafting on interfacial stress transfer in fiber composites, CNTs were grown upon individual carbon T-300 fibers by chemical vapor deposition. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on both pristine and CNT-decorated fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Despite the fiber strength degradation resulting from the harsh CNT growth conditions, the CNT-modified fibers lead to a twofold increase in interfacial shear strength which correlates with the nearly threefold increase in apparent fiber diameter resulting from CNT grafting. These observations corroborate recently published studies with other CNT-grafted fibers. An analysis of the relative contributions to the interfacial strength of the fiber diameter and strength due to surface treatment is presented. It is concluded that the common view whereby an experimentally observed shorter average fragment length leads to a stronger interfacial adhesion is not necessarily correct, if the treatment has changed the fiber tensile strength or its diameter.  相似文献   

10.
An effective carbon fiber/graphene oxide/carbon nanotubes (CF-GO-CNTs) multiscale reinforcement was prepared by co-grafting carbon nanotubes (CNTs) and graphene oxide (GO) onto the carbon fiber surface. The effects of surface modification on the properties of carbon fiber (CF) and the resulting composites was investigated systematically. The GO and CNTs were chemically grafted on the carbon fiber surface as a uniform coating, which could significantly increase the polar functional groups and surface energy of carbon fiber. In addition, the GO and CNTs co-grafted on the carbon fiber surface could improve interlaminar shear strength of the resulting composites by 48.12% and the interfacial shear strength of the resulting composites by 83.39%. The presence of GO and CNTs could significantly enhance both the area and wettability of fiber surface, leading to great increase in the mechanical properties of GO/CNTs/carbon fiber reinforced composites.  相似文献   

11.
Many attempts have been made to fabricate lightweight, high-performance, and low-cost polymeric composites. To improve the mechanical performance of the same material compared to conventional composites, paired hybrid materials were manufactured with different lamination structures. Each of six types of hybrid composite was designed by lamination pairing of carbon/aramid fabric and carbon/glass fabric using VARTM. The dependence of the mechanical properties of the samples on the pairing effects of the lamination structures was investigated. All pairing materials did not lead to a large increase of tensile strength due to the domination of carbon fiber, but the mechanical properties of specific laminates were clearly changed by the particular pairing sequence used. Using the limited material, the design of an effective structure was the central laminating condition with a good tensile and bending properties. Laminating position of the carbon fiber was found to play an important role in the stacking design of hybrid composites.  相似文献   

12.
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed.  相似文献   

13.
In this study, carbon fiber (CF) reinforced polyamide 6 (PA6) composites were prepared by using melt mixing method. Effects of fiber length and content, on the mechanical, thermal and morphological properties of CF reinforced PA6 composites were investigated. Fiber length distributions of composites were also determined by using an image analyzing program. It was seen that the maximum number of fibers were observed in the range of 0–50 μm. Mechanical test results showed that, increasing CF content increased the tensile strength, modulus and hardness values but decreased strain at break values of composites. DSC results showed that Tg and Tm values of composites were not changed significantly with increasing CF content and length. However, heat of fusion and the relative degree of crystallinity values of composites decreased with ascending CF content. DMA results revealed that storage modulus and loss modulus values of composites increased with increasing CF content.  相似文献   

14.
Graphene oxide (GO) and polyhedral oligomeric silsesquioxane (POSS) grafted carbon fiber (CF) was demonstrated to reinforce the mechanical properties of fiber composites. Such a fiber composite was prepared by grafting POSS onto the CF surface using GO as the linkage. The presence of GO linkage and POSS could significantly enhance both the area and wettability of fiber surface, leading to an increase in the interfacial strength between fibers and resin. Compared with the desized CF composites, the grafted CF composites fabricated by compression molding method exhibited 53.05% enhancement in the interlaminar shear strength. The changed surface morphology, surface composition and surface energy were supposed to be related with the interfacial performance of unidirectional composites, as revealed by scanning electron microscopy, atomic force microscope, dynamic contact angle test and X-ray photoelectron microscopy charaterizations.  相似文献   

15.
Water absorption and aging behaviors of fiber reinforced polymerized poly (cyclic butylene terephthalate) (GF/pCBT) composites are investigated. We coated nano-silica on glass fiber surface by physical vapor deposition (PVD) method. Subsequently, we immersed pCBT composites reinforced with nano-treated/untreated fibers in 25 °C and 60 °C distilled water until their saturated moisture. We also exposed some specimens in various hydrothermal aging environments. We tested the mechanical performance of these test specimens and found that the mechanical performance of both pCBT cast and GF/pCBT composites reduces obviously after water absorption and hydrothermal aging. However, nano-silica modified fiber reinforced composites have higher remaining strength than GF/pCBT. Scanning electron microscope (SEM) is used to study the microscopic phase and nanoparticle modified mechanism, and better interface characteristic between fibers and matrix is observed.  相似文献   

16.
In this research, vetiver grass was used as a filler in polypropylene (PP) composite. Chemical treatment was done to modify fiber surface. Natural rubber (NR) and Ethylene Propylene Diene Monomer (EPDM) rubber at various contents were used as an impact modifier for the composites. The composites were prepared by using an injection molding. Rheological, morphological and mechanical properties of PP and PP composites with and without NR or EPDM were studied. Adding NR or EPDM to PP composites, a significant increase in the impact strength and elongation at break is observed in the PP composite with rubber content more than 20% by weight. However, the tensile strength and Young’s modulus of the PP composites decrease with increasing rubber contents. Nevertheless, the tensile strength and Young’s modulus of the composites with rubber contents up to 10% are still higher than those of PP. Moreover, comparisons between NR and EPDM rubber on the mechanical properties of the PP composites were elucidated. The PP composites with EPDM rubber show slightly higher tensile strength and impact strength than the PP composites with NR.  相似文献   

17.
Unidirectional (UD) carbon fibre reinforced polymers offer high specific strength and stiffness but they fail in a catastrophic manner with little warning. Gas-texturing and non-constrained annealing were used to introduce fibre waviness into UD polyamide 12 composites produced by wet-impregnation hoping to produce composites with a more gradual failure mode and increased failure strain. Both methods increased the variation of fibre alignment angle compared to the control samples. The composites containing wavy fibres exhibited a stepwise, gradual failure mode under strain controlled uniaxial tension rather than a catastrophic failure, observed in control samples. Gas-texturing damaged the fibres resulting in a decrease of the tensile strength and strain to failure, which resulted in composites with lower tensile strength and ultimate failure strain than the control composites. Non-constrained annealing of carbon fibre/PA-12 produced wavy fibre composites with ultimate failure strain of 2%, significantly higher than 1.6% of the control composite.  相似文献   

18.
An experimental study is described in this paper dealing with the tensile–tensile fatigue and the quasi-static post-fatigue tensile behaviour of a structurally stitched multi-ply carbon composite and the unstitched counterpart. The influence of the stitching on the fatigue life and on the residual post-fatigue quasi-static properties in two principal direction is investigated. The fatigue behaviour of both composites is represented by Wöhler-like diagrams. The damage imparted during fatigue is studied by X-ray analyses. The residual mechanical properties of the fatigued composites after different number of cycles are compared in term of stiffness and strength. The post-fatigue quasi-static tensile tests include acoustic emission (AE) registration and full-field surface strain mapping (SM) to investigate the damage onset and development. The main conclusions of the experimental work are: the fatigue life is improved in the direction of the structural stitching and is reduced in the orthogonal direction; for the considered cyclic stress level the post-fatigue reduction of the mechanical properties is limited by the structural stitching.  相似文献   

19.
The mechanical properties of magnesium matrix composites reinforced by pyrolytic carbon coated short carbon fiber at temperatures close to and above the solidus temperature were investigated by tensile tests for the first time. Microstructural observations and fractographic analysis were carried out in order to reveal the damage mechanisms of the composites with different fraction of liquid. Tensile strength of the composites decreased monotonously with temperature, an exponential equation relating the tensile strength to temperature and liquid fraction was derived. The elongation increases monotonously with temperatures from 400 °C to 428 °C (solidus temperature), and then decreases gradually with increasing fraction of liquid except a trough at 432 °C. The composites almost have no ductility and cannot sustain tensile stress when the fraction of liquid reaches 8%. The amount and distribution of liquid phase in the composites directly determines their mechanical properties and damage behavior.  相似文献   

20.
A chemical vapor-infiltrated (CVI) SiC layer is often deposited on the pyrocarbon (PyC) fiber–matrix interface layer in SiC fiber-reinforced SiC matrix (SiC/SiC) composites. It is normally applied to protect the PyC layer from reacting with molten Si or sintering aids during manufacturing, and to guard against the effects of high temperature, oxidation and moisture during use. In this study, we investigated the effect of this SiC layer on the tensile properties of a composite. Tensile tests of our composite samples showed the SiC layer to have no noticeable effects on its ultimate load or fracture strain, whereas it decreased the load-to-strain ratio and proportional limit. The test results were analyzed by carrying out element tests on filaments and fiber bundle samples, fracture mirror analysis of pullout fibers, and finite element analysis (FEA) of residual thermal stress around the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号