共查询到20条相似文献,搜索用时 15 毫秒
1.
Negative size effects are commonly reported for advanced composite materials where the strength of the material decreases with increasing volume of the test specimen. In this work, the effect of increasing specimen volume on the mechanical properties of all-cellulose composites is examined by varying the laminate thickness. A positive size effect is observed in all-cellulose composite laminates as demonstrated by a 32.8% increase in tensile strength as the laminate thickness is increased by 7 times. The damage evolution in all-cellulose composite laminates was examined as a function of the tensile strain. Enhanced damage tolerance concomitant with increasing specimen volume is associated with damage accumulation due to transverse cracking and strain delocalisation. A transition from low-strain failure to tough and high-strain failure is observed as the laminate thickness is increased. Simultaneously, scale effects lead to an increase in the void content and cellulose crystallinity at the core, with increasing laminate thickness. 相似文献
2.
Reinforcement effects of MWCNT and VGCF in bulk composites and interlayer of CFRP laminates 总被引:1,自引:0,他引:1
Ning Hu Yuan LiTakaya Nakamura Toshiki KatsumataTakayuki Koshikawa Masahiro Arai 《Composites Part B》2012,43(1):3-9
The reinforcement effects of two nanofillers, i.e., multi-walled carbon nanotube (MWCNT) and vapor grown carbon fiber (VGCF), which are used at the interface of conventional CFRP laminates, and in epoxy bulk composites, have been investigated. When using the two nanofillers at the interface between two conventional CFRP sublaminates, the Mode-I interlaminar tensile strength and fracture toughness of CFRP laminates are improved significantly. The performance of VGCF is better than that of MWCNT in this case. For epoxy bulk composites, the two nanofillers play a similar role of good reinforcement in Young’s modulus and tensile strength. However, the Mode-I fracture toughness of epoxy/MWCNT is much better than that of epoxy/VGCF. 相似文献
3.
The failure envelope of the matrix in composite laminates under compressive loads has not received much attention in literature. There are very little to no experimental results to show a suitable failure envelope for this constituent found in composites. With increasing popularity in the use of micromechanical analysis to predict progressive damage of composite structures which requires the use of individual failure criteria for the fibre and matrix, it is important that matrix behaviour under compression is modelled correctly.In this study, off-axis compression tests under uniaxial compression loading are used to promote matrix failure. Through the use of micromechanical analysis involving Representative Volume Elements, the authors were able to extract the principal stresses on the matrix at failure. The results indicated that hydrostatic stresses play an important role in the failure of the matrix. Thus, Drucker–Prager failure criterion is recommended when modelling compressive matrix failure in composite structures. 相似文献
4.
Natural fiber reinforced composites have attracted interest due to their numerous advantages such as biodegradability, dermal non-toxicity and with promising mechanical strength. The desire to mitigate climate change due to greenhouse gas emissions, biodegradable resins are explored as the best forms of polymers for composites apart from their synthetic counterparts which are non-renewable. In this study biodegradable bark cloth reinforced green epoxy composites are developed with view of application to automotive instrument panels. The optimum curing temperature of green epoxy was shown to be 120 °C. The static properties showed a tensile strength of 33 MPa and flexural strength of 207 MPa. The dynamic mechanical properties, frequency sweep showed excellent fiber-matrix bonding of the alkali treated fabric with the green epoxy polymer with glass transition temperature in the range of 160 °C–180 °C. Treatment of the fabric with alkali positively influenced the mechanical properties of the fabric reinforced biocomposites. 相似文献
5.
Fire behaviour of thermally insulated RC beams strengthened with NSM-CFRP strips: Experimental study
This paper presents the results of fire resistance tests on reinforced concrete (RC) beams flexurally strengthened with carbon fibre reinforced polymer (CFRP) strips installed according to the near surface mounted (NSM) technique using two different adhesives. The beams were simultaneously subjected to a service load and the ISO 834 standard fire. Different fire protection schemes were studied, comprising a thinner insulation layer along the bottom soffit of the beams and a thicker one at the CFRP anchorage zones. The main objectives of this paper were (i) to understand in further depth the fire behaviour of NSM-strengthened RC beams, in particular the structural effectiveness of the strengthening system during fire, (ii) to evaluate the efficiency of the above-mentioned fire protection strategy in extending the CFRP mechanical contribution during fire, and (iii) to compare the fire performance of the NSM-strengthening system with that of the alternative externally bonded reinforcement (EBR) technique, recently investigated under similar test conditions. The results obtained showed that using the adopted insulation schemes (i.e., thicker insulation at the anchorage zone and thinner insulation in the current zone), even after the CFRP-concrete bond is highly damaged in the central zone of the beams, the strengthening system is able to retain its structural effectiveness through a cable mechanism: for insulation thicknesses of 25 mm (current zone) and 50 mm (anchorage zones), the fire resistance of the strengthening system was extended up to 114 min. The loss of effectiveness of the CFRP system occurred when the average temperature in the adhesive at the CFRP anchorage zones attained values ranging from 2.2 to 5.6 times its glass transition temperature (Tg). The comparison with the EBR-strengthened beams confirmed the much better performance of the NSM strengthening. 相似文献
6.
The recently proposed Six-Point Edge Crack Torsion (6ECT) test was used to evaluate the mode III interlaminar fracture of carbon/epoxy laminates. Plate specimens with starter delaminations in 0/0, 0/90 and 0/45 interfaces were tested. Data reduction was performed with an effective crack scheme validated in a previous numerical study. The tests allowed the evaluation of fairly unambiguous initiation GIIIC values and of subsequent R-curves. Examinations of specimen cross-section showed considerable lengths of pure interlaminar propagation in specimens with starter delaminations in 0/90 and 0/45 interfaces. The latter specimens had the lowest initiation GIIIC values. 相似文献
7.
In this work, different types of paper were used for producing cellulose reinforced polypropylene composites with MAPP as a coupling agent. The samples were prepared by a film stacking method of the polymer and paper layers, followed by hot pressing in order to fabricate structural composite laminates. Virgin copy, filter and newspaper were used as reinforcements for producing composites with varying paper content. The influence of paper type and content on the mechanical and physical properties of the laminates was investigated and discussed in detail. Remarkable results for tensile and bending test were obtained for copy and newspaper composites at a paper content of 30 and 40 vol.%, indicating a high potential for constructive and industrial applications of the laminates. Further characterization was carried out by Charpy impact test, water uptake study, TGA and light microscopic analysis. To summarize the characterization, structural paper reinforced composites with attractive properties were obtained. 相似文献
8.
Carbon-based nanomaterials are great choice as reinforcement to Ultra-High Molecular-Weight Polyethylene (UHMWPE), with potential use in orthopedics. While high in-plane-stiffness and strength of these nanomaterials help in toughening, their weaker out-of-plane integrity offers lubrication. Present study investigates effect of aspect ratio of carbon nanotubes (CNT) on toughening and solid-lubrication efficiency of UHMWPE-matrix. A nominal 0.05–0.1 wt.% of CNT addition increases hardness and elastic modulus of UHMWPE by 3–45% and 8–42%, respectively. Higher aspect ratio (HAR) CNTs are found more effective in improving hardness and modulus of UHMWPE. Wear rate and friction-coefficient also increase by 530% and 220%, respectively, while reinforced with HAR CNTs. Thermal analysis shows slight increase in crystallinity and stability of composite. HAR CNTs improve interfacial bonding with matrix, due to their morphological similarity to polymer chains, as compared to low aspect ratio CNT. Aspect ratio of CNTs significantly dominates strengthening and tribological behavior of UHMWPE. 相似文献
9.
Hydrophobic cellulose nanofibers (CNFs) were prepared by surface modification using alkenyl succinic anhydride (ASA). The hydrophobicity of CNFs was varied by changing the degree of substitution (DS) from 0 to 0.83. Modified CNFs were mixed with high-density polyethylene (HDPE) using a twin-screw extruder and the resulting composites were injection molded. The tensile properties initially improved with increasing DS up to ∼0.3–0.5, and then decreased with further substitution. The tensile strength and modulus of 10 wt.% HDPE/CNF composites containing 8.8 wt.% ASA (DS: 0.44) were 43.4 MPa and 1.97 GPa, respectively. These values were both almost 70% higher than those of composites containing unmodified CNF, and 100% and 86% higher, respectively, than those for pure HDPE. X-ray computed tomography measurements showed that CNFs modified with a DS of 0.44 were dispersed uniformly within the resin matrix, whilst unmodified CNFs and those modified with a DS of 0.77 agglomerated within the composites. 相似文献
10.
Tough semiconductor polycarbonate/multiwalled carbon nanotubes nanocomposites by rubber modification
Tough polycarbonate (PC)/multiwalled carbon nanotube (MWCNT) nanocomposites (NCs) modified by a maleated styrene/ethylene–butylene/styrene (mSEBS) rubber were obtained in the melt state using a highly dispersed PC/MWCNT master-batch. An electrical percolation threshold (pc) occurred at only 0.5% MWCNT showing a power law critical exponent of 2.60, which is characteristic of a three-dimensional percolated structure. The presence of MWCNT decreased the rubber particle size due to an increase in matrix viscosity. In addition to high electrical conductivity, the elastic modulus of the NCs was similar to that of the PC, as a result of the combined presence of 0.5% MWCNT and 4% mSEBS; the mSEBS was also able to provide (i) considerable impact strength, (ii) clear ductile behavior and (iii) increased resistance against crack propagation. 相似文献
11.
Jianwei ZhangDazhi Jiang 《Composites Science and Technology》2011,71(4):466-470
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly. 相似文献
12.
This paper investigates the through-thickness tensile behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. Tensile tests were carried out with cross specimens at room temperature and liquid nitrogen temperature (77 K), and the through-thickness elastic and strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical and laser scanning microscopy observations. A three-dimensional finite element analysis was performed to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. It is found that the cross specimen is suitable for the cryogenic through-thickness tensile characterization of laminated composite materials. In addition, the through-thickness Young's modulus of the woven GFRP composite laminates is dominated by the properties of the matrix polymer in the given temperature, while the tensile strength is characterized by both, the fiber to matrix interface energy and the cohesion energy of the matrix polymer. 相似文献
13.
14.
In this study the effect of moisture absorption on the mechanical properties of glass-reinforced polyester composites is evaluated using both destructive and nondestructive tests. The composite resins were produced with two different production processes, while the mechanical properties of the composite materials were measured using DMA destruction tests. According to the DMA tests, the dependency in terms of temperature for the real component of the complex elastic modulus (E′), the imaginary component of the complex elastic modulus (E″), as well as tan(δ) can be traced. For a more efficient use of the composite materials, the compliance tensor was obtained with nondestructive tests based on ultrasound. A method for the generation and reception of Lamb waves in plates of composite materials is described, based on using air-coupling, low-frequency, ultrasound transducers in a pitch–catch configuration. The results of the nondestructive measurements made in this study are in good agreement with those obtained when using the DMA destructive tests. 相似文献
15.
The microstructure, mechanical strength, dielectric properties, Doppler broadening measurements and positron life time studies of the composites containing multi walled carbon nanotubes (MWCNTs) and natural rubber (NR) are investigated. The uniform distribution of MWCNTs in the elastomer medium is studied by Raman spectroscopy and the electron microscopy images show the composite’s internal microstructure. Free volume sizes and interstitial mesopore sizes of the nanocomposites are determined by positron annihilation lifetime spectroscopy (PALS). PALS investigates the influence of the nanotubes in regulating the interphase nanoscale character. Strong interfacial interaction causes an apparent reduction of the free-volume fraction of NR probably by depressing the formation of free-volume holes in the interfacial region. The mechanical percolation and percolation observed from the dielectric measurements are correlated with the life time values. It is established that the sub-nano level free volumes and nano level structure of the composites have significant roles in regulating the mechanical properties. 相似文献
16.
Laminates, composed of different papers and polypropylene (PP), were fabricated by a manual stacking and hot pressing. The laminates were characterized by mechanical testing and the results were compared to glass fiber reinforced PP. Furthermore, a detailed evaluation of the interfacial properties and the paper structures was carried out by means of data modeling via rule of mixtures (ROM), as well as electron microscope (SEM) analysis. For investigating the influence of the laminate’s composition on the water adsorption behavior, water diffusion coefficients were determined. As a result, laminates with a tensile modulus up to 6 GPa and a tensile strength of 80 MPa were obtained. The property changes of the papers upon processing were successfully modeled, revealing a significant increase of the paper’s mechanical properties after fiber embedding. In general, the obtained results indicate a high potential of paper as a suitable reinforcement material for low to middle strained applications. 相似文献
17.
The present research work demonstrated the effect of graphene oxide (GO) on the physical, mechanical, thermo-mechanical etc., properties of neoprene (CR) and chlorosulfonated polyethylene (CSPE) vulcanizates. CR and CSPE based nanocomposites were prepared by both solution intercalation and melt intercalation methods. The changes obtained in the morphology, cure characteristics, mechanical, thermal, thermo-mechanical properties of the rubber nanocomposites have been widely investigated. X-ray diffraction analysis (XRD) and transmission electron microscopic (TEM) analysis of the samples revealed partial exfoliated structure of GO containing rubber composites. Mechanical, thermal, cure and thermo-mechanical properties of the elastomeric nanocomposites were improved compared to the neat rubbers. 相似文献
18.
A study on the flexural properties of bidirectional hybrid epoxy composites reinforced by E glass and T700S carbon fibres in inter-ply configurations is presented in this paper. Test specimens are made by hand lay-up and their flexural properties are obtained by three point bend test in accordance with ASTM D790-07. For comparison, the flexural behaviour is also modelled numerically using finite element analysis (FEA), and analytically using the Classic Lamination Theory (CLT). It is shown from the results that in general, good agreement is found between the experimental data and the model predictions. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy laminas. No significant hybrid effects for the flexural strength are found from the experiments. However, simulation studies show that hybridisation can potentially improve the flexural strength. 相似文献
19.
Exfoliated graphite nanoplates (xGnPs)/polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene (SEBS) nanocomposites have been prepared by the simple melt-compounding approach. The structural, mechanical and viscoelastic properties of these composites were studied and compared. Wide-angle X-ray diffraction (WAXD) studies indicated that the processing of nanocomposites did not change the original d-spacing of xGnPs. Scanning electron microscopy observation on the fracture surfaces of the composites shows a uniform dispersion of xGnPs throughout SEBS matrix and strong interfacial adhesion between oxidized xGnPs and the matrix, which are responsible for the considerable enhancement of mechanical properties of the composites. It is found that the addition of xGnPs particles improved both the elastic modulus and storage modulus of pure SEBS significantly and the higher the xGnPs content, the higher the modulus of the nanocomposite. Moreover, the effects of dispersed xGnPs on the microphase separation of SEBS have also been investigated using small angle X-ray scattering (SAXS). 相似文献
20.
By combining a high sensitive dielectric sensor into a parallel plate rheometer, the time evolution of the dielectric properties of polyethylene/carbon nanotube composites was measured in the molten state under oscillatory shear. Composites with single- (SWCNT) or multiwall (MWCNT) carbon nanotubes initially decrease its conductivity proportional to the oscillatory shear-strain applied. After this initial drop, some composites increase the conductivity under these non-quiescent conditions reflecting a possible shear-induced agglomeration process. The latter based on the complex permittivity spectrum showing a shortening in the CNT-CNT distances in these composites after shear. At concentrations below the electrical percolation threshold, the presence of both SWCNTs and MWCNTs reduces the DC conductivity of the molten matrices. This result shows that carbon nanotubes can act as a scavenger for impurities or additives present in commercial polyethylenes. 相似文献