首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在反应堆运行时,由于燃料棒、堆内构件等部件会受到高压过冷态的冷却剂的腐蚀冲刷的影响,会产生许多不溶性腐蚀产物。利用FLUENT软件模拟不溶性粒状腐蚀产物在堆芯燃料棒流域里沉积分布。对液相采用标准k-ε模型预测通道内流场与近壁面区域的湍流变化,对腐蚀产物颗粒物采用DPM模型(离散相模型)来跟踪颗粒的运动轨迹。研究发现:在堆芯流域腐蚀产物颗粒在对称面附近形成高浓度区域,在入口段腐蚀产物颗粒浓度比出口段高。在包壳入口段表面呈大面积附着沉积,这会改变堆芯中子通量分布和包壳材料的热导率,引起堆芯轴向功率偏移;而在包壳出口段表面呈点状沉积,这会导致包壳出现点蚀现象。点蚀区域会引起传热恶化,破坏包壳完整性。针对腐蚀产物颗粒沉积规律和堆内组件的腐蚀特点,提出定时定点、针对局部强化清理等缓解措施。  相似文献   

2.
反应堆一回路腐蚀产物在燃料包壳表面过冷泡核沸腾的作用下沉积于包壳表面,形成燃料污垢。一回路注锌被认为是抑制燃料包壳表面污垢沉积的重要途径之一。本文通过开展国产锆合金燃料包壳在不同锌浓度下的污垢沉积试验,研究在模拟核电站高温高压水环境中注锌对污垢沉积行为的影响,得到污垢沉积的锌浓度敏感性结果。冷却剂中的锌浓度越高,燃料包壳表面的烟囱状结构越不明显,污垢表面越平整,污垢沉积厚度越小,污垢内部镍铁比降低,硼析出量越少。当锌浓度增加至100μg·L-1,污垢内部有少量含锌物相析出。结果表明:当锌浓度在0~100μg·L-1范围内时,一回路注锌能够显著抑制燃料包壳表面的污垢沉积。  相似文献   

3.
新版HAD 102/07—2020核动力厂反应堆堆芯设计中明确要求:设计分析应考虑反应堆冷却剂系统正常运行产生的腐蚀产物在包壳表面的沉积导致的燃料棒传热恶化。因此,有必要分析燃料污垢对事故工况下燃料棒传热性能的影响,特别是以燃料芯块温度和包壳温度为验收准则的典型事故工况。本文开发污垢计算模型,采用等效热导率关系式计算含污垢和氧化层的包壳热导率,即认为污垢、氧化层均匀分散在包壳层中,使得包壳热导率变化,该等效包壳层所引起的温度梯度与实际情况相同。随后,基于对“华龙一号”核动力厂事故分析结果,选取了典型非LOCA事故(弹棒事故、功率运行下单个控制棒失控抽出事故)和LOCA事故进行污垢影响研究。结果表明,考虑污垢后,事故过程中的燃料芯块中心峰值温度和包壳峰值温度均有显著上升,但依然满足事故验收准则要求。  相似文献   

4.
压水堆一回路系统产生的氧化腐蚀产物,由于过冷沸腾在燃料棒表面发生沉积产生燃料污垢,冷却剂中的可溶硼也会在其中吸附,进而引发堆芯的轴向功率偏移异常,影响堆芯安全和运行。针对燃料污垢的形貌特征,首先采用蒙特卡罗方法建立燃料污垢层的中子学计算模型,考虑其强中子吸收效应以及空间自屏效应,评价燃料污垢层不同等效模拟方法的计算精度。基于评价结果,确定燃料污垢的模拟方法,并在堆芯核设计程序中予以实现。基于该方法,对设计堆芯的多循环燃料管理方案中,燃料污垢引发的轴向功率偏移进行量化计算分析,结果表明,该堆芯中燃料污垢引发轴向功率偏移的风险较低。  相似文献   

5.
核电厂失水事故后长期冷却阶段,化学产物可能在堆芯燃料棒表面析出,增加燃料组件表面沉积的碎片量,导致堆芯流道堵塞、包壳温度升高等问题,影响应急堆芯冷却系统长期冷却再循环能力。根据核电厂失水事故后安全壳内材料特定的溶解特性及国际通用的堆内下游效应分析方法,开展核电厂长期冷却阶段潜在的化学产物在堆芯燃料组件表面的析出特性分析。结果表明,失水事故后核电厂安全壳内材料会释放铝、硅、钙等元素并在燃料组件表面析出硅酸铝钠和硼酸钙沉淀,硅酸铝钠和硼酸钙在长期冷却阶段的最大沉积厚度分别为0.0124mm和0.0518mm,化学产物在燃料组件表面的沉积在核电厂堆芯长期冷却性能评估中应予以考虑。  相似文献   

6.
锌离子注入技术可有效减少压水堆一回路腐蚀和职业辐照剂量。但当燃料棒上发生过冷沸腾时,注入的锌离子具有与一回路冷却剂中的微量硅在燃料棒上形成硅酸锌沉积,导致燃料包壳温度升高及腐蚀加剧的风险。通过热力学方法计算锌注入条件下Zn2SiO4的溶解度,分析了Zn2SiO4的沉积风险。溶解度计算结果表明,锌离子注入量为40×10-9,一回路冷却剂中含硅量限值为1×10-6时,不形成Zn2SiO4沉淀;但当燃料棒表面锌和硅的浓缩倍率达到10倍时,就会有Zn2SiO4沉积的风险。  相似文献   

7.
轻水堆燃料组件的可靠性已经相当高了,但是运行经验表明,核燃料棒的缺陷还没有完全排除掉。万一这些缺陷属于穿透包壳壁的,那就有可能导致裂变产物的释放,从而污染一回路循环系统。为了避免一回路冷却水的持久性污染,必须及时地探测到泄漏的燃料棒,并把它从堆芯中换掉。  相似文献   

8.
裂变产物作为一回路冷却剂中放射性核素的重要组成部分,在核电厂设计中具有非常重要的意义。文中对堆芯积存量计算模型、燃料包壳内裂变产物向一回路冷却剂释放模型、裂变产物在一回路中的平衡模型进行了分析与研究,并以典型压水堆核电厂为例进行了计算与验证,证实了本文中给出计算模型的合理性以及适用性,可供压水堆核电站裂变产物源项计算分析参考。  相似文献   

9.
核电金属材料在高温高压水环境中发生腐蚀,其腐蚀产物将会在堆芯内沉积,并对燃料运行、堆芯反应性及一回路放射性等产生影响。本文基于腐蚀释放动力学理论,结合金属氧化物体积比(Pilling-Bedworth Ratio,PBR)假设,建立了一种核电金属材料腐蚀释放模型,并基于因科镍690的实验数据,对该模型进行了验证。结果表明:该腐蚀释放模型具有科学性及合理性,可定量分析核电金属材料主要的腐蚀释放产物。本文提出的腐蚀释放模型可量化腐蚀产物主要元素,为反应堆腐蚀产物影响分析提供基础要素,对微量元素的量化后续还需做进一步的研究。  相似文献   

10.
为确定严重事故条件下燃料棒包壳温度达到金属锆的熔点后包壳氧化层的失效时间、再定位熔融物的成分以及氧化层失效对堆芯熔化进程的影响,本文基于熔融锆同时溶解UO_2和ZrO_2动力学模型及燃料棒包壳水侧氧化层的受力分析建立了氧化层在熔融锆中溶解失效的准则。以FPT-0实验结果验证后发现该失效准则可以较准确地预测包壳氧化层的溶解失效。为增加该准则在严重事故计算程序中的适用性,在燃料棒设计结构一定的条件下,进一步将该准则量化为温度的函数,分析表明包壳氧化程度和燃料棒温度上升速率是影响包壳氧化层失效温度的主要因素。利用该失效准则可以同时获得包壳氧化层失效后再定位的熔融物的质量及成分含量。  相似文献   

11.
由于控制棒抽出引起堆芯内反应性失控增加,从而导致核功率剧增的事故定义为一组控制棒组件抽出事故。这种瞬态可能是反应堆控制系统或棒控系统失灵引起的。多普勒负反应性反馈效应能在保护动作延迟的时间内将功率限制在可接受的水平。该事故中,燃料棒表面可能发生偏离泡核沸腾(departure from nucleate boiling,简称DNB),导致燃料元件包壳烧毁;燃料芯块也可能发生熔化,对包壳产生不利影响。文章对岭澳混合堆芯和提高富集度论证次临界或低功率启动工况下提棒事故进行了分析。分析结果表明,事故瞬态中不会发生燃料芯块熔化或燃料元件包壳烧毁,可以保证燃料元件的完整性,燃料设计满足限制准则。  相似文献   

12.
锆合金包壳的腐蚀和吸氢性能是影响燃料棒堆内性能的重要因素。本文在锆合金包壳均匀腐蚀吸氢基本机理和现有模型的基础上,结合某特定燃料棒包壳材料的具体情况和使用特点,建立了包壳材料的均匀腐蚀和吸氢模型,并根据现有辐照数据对所建立的模型进行了验证。  相似文献   

13.
为了定量分析反应堆冷却剂加锌工艺对一回路系统堆芯外放射性水平的影响,本文结合描述材料微观腐蚀过程的混合传导模型(MCM)和描述腐蚀产物活化、迁移及沉积的宏观输运模型,形成了能够系统性描述一回路结构材料腐蚀-活化-迁移的联合模型,并通过遗传算法分析及文献调研确定模型各主要参数。经校验表明该模型能够有效计算正常运行工况下一回路中结构材料的均匀腐蚀程度,同时也能给出结构材料表面沉积层的放射性活度分布。使用该模型对加锌前后系统内不同分区的活度分别进行了计算,结果表明加锌工艺能显著降低一回路堆芯外放射性水平。  相似文献   

14.
《核动力工程》2017,(6):36-41
燃料棒制造过程中会不可避免地产生芯块掉块(MPS)缺陷,该缺陷有可能导致运行过程中燃料包壳局部应力超过受力限值,产生包壳失效。本研究借助ABAQUS软件,通过编写相应的用户自定义子程序,将燃料棒相关的辐照效应、热效应、间隙热传导模型等引入数值模拟计算,完成了对具有MPS缺陷燃料棒热力性能的分析。对比具有不同MPS缺陷尺寸燃料棒的热力学性能模拟结果,完成MPS缺陷尺寸对燃料棒热力性能的敏感性分析。模拟结果表明,MPS缺陷会造成燃料棒中心温度升高,并且在包壳内外表面上出现拉压应力交替的现象;MPS缺陷尺寸越大,该影响越显著。较大的掉块尺寸会对反应堆运行过程中燃料棒的结构完整性造成威胁,应引起注意。  相似文献   

15.
为提升核电站的经济效益和满足高燃耗的需要,越来越多先进高效的核燃料组件被研究制造,并采用与原有组件混合布置的方式进行性能评估,从而形成混合堆芯。燃料污垢(CRUD,Chalk RiversUnidentifiedDeposit)的沉积及一回路冷却剂中源项水平对于大修人员辐射防护有着重要影响,由于两种组件结构和材料上的差异,造成混合堆芯热工水力条件的变化,可能会对一回路腐蚀产物沉积和一回路放射性水平造成一定影响。本文针对某压水堆引入改进型AFA-3G燃料组件的过渡循环,对比计算了不同混合堆芯方案下的冷却剂源项和主管道停堆沉积源项(dose rate)水平。计算结果表明,不同混合堆芯方案下一回路冷却剂源项变化较小,引入改进型AFA-3G燃料组件对于降低主管道dose rate具有积极作用。  相似文献   

16.
压水堆核电站安全分析报告是核安全监管部门对其进行安全审查的重要文件,大破口失水事故是核电站运行的设计基准事故,是安全分析报告中的重要内容。本文使用RELAP5/MOD3.2进行压水堆冷管段大破口失水事故的计算,对比发现一回路冷管段发生双端断裂大破口时燃料元件包壳温度峰值(PCT)最高,且长时间维持在较高温度,此条件下反应堆最危险。计算结果表明,事故发生后,一回路压力迅速下降,堆芯冷却剂的流动性变差,导致堆芯裸露,燃料包壳温度又重新回升。通过安注系统和辅助给水系统等一系列动作,能保证燃料元件包壳温度不超过1204 ℃的限值。  相似文献   

17.
压水堆核电站安全分析报告是核安全监管部门对其进行安全审查的重要文件,大破口失水事故是核电站运行的设计基准事故,是安全分析报告中的重要内容。本文使用RELAP5/MOD3.2进行压水堆冷管段大破口失水事故的计算,对比发现一回路冷管段发生双端断裂大破口时燃料元件包壳温度峰值(PCT)最高,且长时间维持在较高温度,此条件下反应堆最危险。计算结果表明,事故发生后,一回路压力迅速下降,堆芯冷却剂的流动性变差,导致堆芯裸露,燃料包壳温度又重新回升。通过安注系统和辅助给水系统等一系列动作,能保证燃料元件包壳温度不超过1 204℃的限值。  相似文献   

18.
压水堆核电站在未发生燃料包壳破损的情况下,85%的堆芯外辐射场是由活化腐蚀产物造成的。本论文分析讨论了一回路冷却剂中主要的活化腐蚀产物及其产生的原理,提出了通过水化学控制来降低活化腐蚀产物的几种主要措施,包括pH控制、氧化运行以及注锌技术等。核电站相关分析数据表明,这些水化学控制措施对于控制活化腐蚀产物均取得了良好的效果。  相似文献   

19.
Jun  Hwan  Kim  Myoung  Ho  Lee  Byoung  Kwon  Choi  李大鹏 《国外核动力》2005,26(4):60-64
1前言 在反应堆假想设计事故中,保持燃料的完整性与在正常运行中一样重要。失水事故(LOCA)被认为是轻水堆(LWR)设计中最重要的潜在设计基准事故。当LOCA发生时,燃料组件温度上升,包壳经历由水和蒸汽混合物与包壳材料相互作用引起的氧化过程。经过一个时间的延迟,应急堆芯冷却系统投入,注入水以冷却堆芯,这样就不可避免地伴随有包壳发生热收缩。当变脆的包壳不再能承受内在应力时,包壳将会发生破裂,这将导致阻碍裂变产物释放的屏障丧失。为维持假想LOCA工况下的燃料完整性,  相似文献   

20.
压水堆燃料棒工作在复杂的辐照、热和力学环境中,对其性能进行定量评估涉及多种复杂的物理现象。目前常用的燃料性能分析程序一般对结构采用简化的轴对称假设,对辐照肿胀、辐照蠕变和高温蠕变等物理现象以及辐照-热-力等物理场之间的耦合考虑并不充分。基于ABAQUS有限元求解框架,开发了压水堆燃料棒三维热-力学性能的模拟程序,利用程序对压水堆燃料棒进行了稳态分析,以及升功率和反应性引入事故两种瞬态分析。结果表明:辐照引起燃料致密化和肿胀对燃料温度变化有重要影响;芯块应变增加主要是由裂变产物肿胀引起的;芯块几何结构导致包壳应力集中发生在芯块间的交界面处;燃料棒功率的急剧变化会加快芯块表面破裂的进程;反应性引入事故会导致芯块从内部开始破裂,并会引发芯块-包壳的接触。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号