首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aligned carbon nanotubes (CNTs) are implemented into alumina-fiber reinforced laminates, and enhanced mass-specific thermal and electrical conductivities are observed. Electrical conductivity enhancement is useful for electrostatic discharge and sensing applications, and is used here for both electromagnetic interference (EMI) shielding and deicing. CNTs were grown directly on individual fibers in woven cloth plies, and maintained their alignment during the polymer (epoxy) infiltration used to create laminates. Using multiple complementary methods, non-isotropic electrical and thermal conductivities of these hybrid composites were thoroughly characterized as a function of CNT volume/mass fraction. DC and AC electrical conductivity measurements demonstrate high electrical conductivity of >100 S/m (at 3% volume fraction, ∼1.5% weight fraction, of CNTs) that can be used for multifunctional applications such as de-icing and electromagnetic shielding. The thermal conductivity enhancement (∼1 W/m K) suggests that carbon-fiber based laminates can significantly benefit from aligned CNTs. Application of such new nano-engineered, multi-scale, multi-functional CNT composites can be extended to system health monitoring with electrical or thermal resistance change induced by damage, fire-resistant structures among other multifunctional attributes.  相似文献   

2.
An experimental study was conducted to improve the electrical conductivity of continuous carbon fibre/epoxy (CF/EP) composite laminate, with simultaneous improvement in mechanical performance, by incorporating nano-scale carbon black (CB) particles and copper chloride (CC) electrolyte into the epoxy matrix. CF/EP laminates of 65 vol.% of carbon fibres were manufactured using a vacuum-assisted resin infusion (VARI) technique. The effects of CB and the synergy of CB/CC on electrical resistivity, tensile strength and elastic modulus and fracture toughness (KIC) of the epoxy matrix were experimentally characterised, as well as the transverse tensile modulus and strength, Mode I and Mode II interlaminar fracture toughness of the CF/EP laminates. The results showed that the addition of up to 3.0 wt.% CB in the epoxy matrix, with the assistance of CC, noticeably improved the electrical conductivity of the epoxy and the CF/EP laminates, with mechanical performance also enhanced to a certain extent.  相似文献   

3.
Fibre-reinforced polymer composites typically feature low functional (e.g., electric and thermal conductivity) and structural (e.g. mechanical strength and fracture toughness) properties in the laminate’s thickness direction. In the event of lightning strikes, overheating, and impact by foreign objects, composite laminates may suffer wide spread structural damage. This research explores the synergistic physical interaction between two-dimensional nanostructured (graphene nano-platelets) and, zero- or one-dimensional conductive fillers (silver nanoparticles or silver nanowires, respectively) when both are dispersed in fibre–polymer laminates. The results reveal a synergistic improvement in the through-thickness thermal conductivity that is more than the additive improvements by each constituent. Specifically, the simultaneous inclusion of graphene nano-platelets and silver nanoparticles/nanowires at a combined loading of 1 vol% resulted in approximately 40% enhancement in the through-thickness thermal conductivity while the inclusion of graphene nano-platelets alone at the same loading resulted only in 9% improvement. Similarly, the through-thickness electrical conductivity of carbon fibre/epoxy laminates incorporating graphene nano-platelets together with silver nanoparticles/nanowires was notably higher (⩾70%) than can be achieved by graphene nano-platelets alone (∼55%). These results demonstrate that the presence of nano-reinforcements exhibiting varied phonon transport and electron transfer pathways, and geometric aspect ratios promote synergistic physical interactions. Small improvements were found in the mechanical properties, including tensile, flexural or compressive properties of the carbon fibre-reinforced laminates, due to the relatively low concentrations of the nano-fillers.  相似文献   

4.
Herein we report the development and evaluation of hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing mats of electrospun carbon nanofibers (ECNs). The results indicated that (1) the interlaminar shear strength and flexural properties of hybrid multi-scale composite were substantially higher than those of control/comparison composite without ECNs; in particular, the interlaminar shear strength was higher by ∼86%; and (2) the electrical conductivities in both in-plane and out-of-plane directions were enhanced through incorporation of ECNs, while the enhancement of out-of-plane conductivity (∼150%) was much larger than that of in-plane conductivity (∼20%). To validate the data reduction procedure, a new shear stress formula was formulated for composite laminates, which took into account the effect of layup and inter-layers. The study suggested that ECNs could be utilized for the development of high-performance composites, particularly with the improved out-of-plan properties (e.g., interlaminar shear strength).  相似文献   

5.
In order to clarify the effects of carbon fiber size on the properties of carbon fiber/high strength glass fabric (HSGF)/phenolic laminate, two kinds of laminates modified by nano-sized carbon fibers (CNFs) and micro-sized carbon fibers (CMFs), were respectively fabricated. The interlaminar shear strength (ILSS) and tribological properties of HSGF/phenolic laminates modified by CNFs and CMFs in water environment were comparatively investigated. Results showed that CNFs at proper contents ranging from 1.0% to 3.0% can enhance ILSS of HSGF/phenolic laminate, while CMFs deteriorated the ILSS. After water immersion, ILSS of the laminates modified by CNFs at 1.0–3.0% were just slightly decreased; however, those of the laminates modified by CMFs suffered larger drop. On the other hand, however, CMFs were more effective than CNFs in improving the wear resistance of HSGF/phenolic laminate in water.  相似文献   

6.
The electrical conductivity (EC) of continuous carbon fibre (CF) layers is highly anisotropic and is expressed by a second order tensor. In the present work, using continuity equation for anisotropic media, the electrical conductivity of a dry CF multilayer preform can be predicted. Hence, the electrical conductivity tensor of the CF preform can be calculated for any stacking sequence. By means of the calculated electrical conductivity tensor of the multilayer preform, the elliptical form of the governing equation can be solved numerically. Based on this, the generated heat (Joule effect) can be determined. Introducing the generated heat into the heat transfer equation, the temperature field over the CF preform can be predicted. For the experimental verification, a thermal camera was used to record the temperature field developed on a CF multilayer preform under given electric potential field. The experimental results were compared to the respective numerical calculations of the temperature field, where the electrical conductivity tensor was calculated analytically based on the proposed methodology. In all the tested cases the calculated electrical conductivity tensor leads to a numerical model which is in excellent agreement with the experimental results.  相似文献   

7.
The transverse tensile properties, interlaminar shear strength (ILSS) and mode I and mode II interlaminar fracture toughness of carbon fibre/epoxy (CF/EP) laminates with 10 wt% and 20 wt% silica nanoparticles in matrix were investigated, and the influences of silica nanoparticle on those properties of CF/EP laminates were characterized. The transverse tensile properties and mode I interlaminar fracture toughness (GIC) increased with an increase in nanosilica concentration in the matrix resins. However, ILSS and the mode II interlaminar fracture toughness (GIIC) decreased with increasing nanosilica concentration, especially for the higher nanosilica concentration (20 wt%). The reduced GIIC value is attributed to two main competing mechanisms; one is the formation of zipper-like pattern associated with matrix microcracks aligned 45° ahead of the crack tip, while the other is the shear failure of matrix. The ratio of GIIC/GIC decreased with the concentration of silica nanoparticles, comparable with similar CF/EP laminates with dispersed CNTs in matrix. Fractographic studies showed that interfacial failure between carbon fibre and epoxy resin occurred in the neat epoxy laminate, whereas a combination of interfacial failure and matrix failure occurred in the nanosilica-modified epoxy laminates, especially those with a higher nanosilica concentration (20 wt%).  相似文献   

8.
Carbon nanotube (CNT)-grafted carbon fibers (CFs) have emerged as new reinforcements for improving the mechanical properties of CF-reinforced composites but such enhancement in macroscale composites has not been realized. This paper reports a facile method for preparing CNT-grafted CFs and improving the tensile strength of their composites. A CNT/polyacrylonitrile solution was sprayed onto the surface of the CF woven fabrics, and the CNTs were grafted by a thermal treatment at 300 °C. CNT-grafted CF composites were fabricated using the CNT-grafted CF woven fabrics using a vacuum-assisted resin transfer molding process with epoxy resin. The CNT-grafted CF composite exhibited 22% enhancement in the tensile strength compared to that of the pristine CF composite. Fracture surfaces of the CNT-grafted CF composites showed that the grafted CNTs obstructed the propagation of micro-cracks and micro-delamination around the CFs and also yarn boundaries, resulting in improved tensile strength of CNT-grafted CF composites.  相似文献   

9.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   

10.
This paper presents a preliminary investigation on the effects of incorporating carbon nanotubes (CNT) into polyamide-6 (PA6) on mechanical, thermal properties and fire performance of woven glass reinforced CNT/PA6 nanocomposite laminates. The samples were characterized by tensile and flexural tests, thermal gravimetric analysis (TGA), heat distortion temperature (HDT) measurements, thermal conductivity and cone calorimeter tests. Incorporation of up to 2 wt% CNT in CNT/PA6/GF laminates improved the flexural stress of the laminates up to 36%, the thermal conductivity by approximately 42% and the ignition time and peak HRR time was delayed by approximately 31% and 118%, respectively.  相似文献   

11.
Fibre reinforced polymers (FRPs) are an important group of materials in lightweight constructions. Most of the parts produced from FRPs, like aircraft wings or wind turbine rotor blades are designed for high load levels and a lifetime of 30 years or more, leading to an extremely high number of load cycles to sustain. Consequently, the fatigue life and the degradation of the mechanical properties are aspects to be considered. Therefore, in the last years condition monitoring of FRP-structures has gained importance and different types of sensors for load and damage sensing have been developed.

In this work a new approach for condition monitoring was investigated, which, unlike other attempts, does not require additional sensors, but instead is performed directly by the measurement of a material property of the FRP. An epoxy resin was modified with two different types of carbon nanotubes and with carbon black, in order to achieve an electrical conductivity. Glass fibre reinforced composites (GFRP) were produced with these modified epoxies by resin transfer moulding (RTM). Specimens were cut from the produced materials and tested by incremental tensile tests and fatigue tests and the interlaminar shear strength (ILSS) was measured. During the mechanical tests the electrical conductivity of all specimens was monitored simultaneously, to assess the potential for stress/strain and damage monitoring.

The results presented in this work, show a high potential for both, damage and load detection of FRP structures via electrical conductivity methods, involving a nanocomposite matrix.  相似文献   


12.
In this study, carbon fibers (CFs) were coated with graphene nanoplatelets (GnP), using a robust and continuous coating process. CFs were directly immersed in a stable GnP suspension and the coating conditions were optimized in order to obtain a high density of homogeneously and well-dispersed GnP. GnP coated CFs/epoxy composites were manufactured by a prepreg and lay-up method, and the mechanical properties and electrical conductivity of the composites were assessed. The GnP coated CFs/epoxy composites showed 52%, 7%, and 19% of increase in comparison with non-coated CFs/epoxy composites, for 90° flexural strength, 0° flexural strength and interlaminar shear strength, respectively. Meanwhile, incorporating GnP in the CF/epoxy interphase significantly improved the electrical conductivity through the thickness direction by creating a conductive path between the fibers.  相似文献   

13.
In this research, the effects of carbon nanofibers (CNFs) on thermo-elastic properties of carbon fiber (CF)/epoxy composite for the reduction of thermal residual stresses (TRS) using micromechanical relations were studied. In the first step, micromechanical models to calculate the coefficient of thermal expansion (CTE) and Young's modulus of CNF/epoxy and CNF/CF/epoxy nanocomposites were developed and compared with experimental results of the other researchers. The obtained results of the CTE and Young's modulus of modified Schapery and Halpin-Tsai theories have good agreement with the experimental results. In the second step, the classical lamination theory (CLT) was employed to determine the TRS for CNF/CF/epoxy laminated nanocomposites. Also, the theoretical results of the CLT were compared with experimental results. Finally, reduction of the TRS using the CLT for different lay-ups such as cross ply, angle ply, and quasi-isotropic laminates were obtained. The results demonstrated that the addition of 1% weight fraction of CNF can reduce the TRS that the most reduction occurred in the unsymmetric cross-ply laminate by up to 27%.  相似文献   

14.
Microwave processing holds great potential for improving current composite manufacturing techniques, substantially reducing cure cycle times, energy requirements and operational costs. In this paper, microwave heating was incorporated into the resin transfer moulding technique. Through the use of microwave heating, a 50% cure cycle time reduction was achieved. The mechanical and physical properties of the produced carbon fibre/epoxy composites were compared to those manufactured by conventional resin transfer moulding. Mechanical testing showed similar values of flexural moduli and flexural strength for the two types of composites after normalisation of the corresponding data to a common fibre volume fraction. A 9% increase of the interlaminar shear strength (ILSS) was observed for the microwave cured composites. This enhancement in ILSS is attributed to a lowering of resin viscosity in the initial stage of the curing process, which was also confirmed via scanning electron microscopy by means of improved fibre wetting and less fibre pull-out. Furthermore, both types of composites yielded minimal void content (<2%). Dynamic mechanical thermal analysis revealed comparable glass transition temperatures for composites produced by both methods. A 15 °C shift in the position of the β-transition peak was observed between thermally and microwave cured composites, suggesting an alteration in the cross-linking path followed.  相似文献   

15.
Due to the growing needs of thermal management in modern electronics, polyimide-based (PI) composites are increasingly demanded in thermal interface materials (TIMs). Graphene woven fabrics (GWFs) with a mesh structure have been prepared by chemical vapor deposition and used as thermally conductive filler. With the incorporation of 10-layer GWFs laminates (approximate 12 wt%), the in-plane thermal conductivity of GWFs/PI composite films achieves 3.73 W/mK, with a thermal conductivity enhancement of 1418% compared to neat PI. However, the out-of-plane thermal conductivity of the composites is only 0.41 W/mK. The in-plane thermal conductivity exceeds its out-of plane counterpart by over 9 times, indicating a highly anisotropic thermal conduction of GWFs/PI composites. The thermal anisotropy and the enhanced in-plane thermal conductivity can be attributed to the layer-by-layer stacked GWFs network in PI matrix. Thus, the GWFs-reinforced polyimide films are promising for use as an efficient heat spreader for electronic cooling applications.  相似文献   

16.
Polymer-derived Si-C-N ceramics reinforced by homogeneously distributed octadecylamine-functionalized single-walled carbon nanotubes (SWCNTs) were synthesized using a casting process, successive pressureless cross-linking and thermolysis. We find that the incorporation of even small amounts of modified SWCNTs leads to a remarkable improvement of mechanical and electrical transport properties of our composites. In particular, we find twofold enhancement of fracture toughness. The Youngs modulus and the hardness show increase by ∼30% and 15%, respectively. Furthermore, the electrical conductivity was found to increase more than five orders of magnitude even for a tube content of 0.5 wt.%.  相似文献   

17.
In this work, carbon composite bipolar plates consisting of synthetic graphite and milled carbon fibers as a conductive filler and epoxy as a polymer matrix developed using compression molding is described. The highest electrical conductivity obtained from the described material is 69.8 S/cm for the in-plane conductivity and 50.34 S/cm for the through-plane conductivity for the composite containing 2 wt.% carbon fiber (CF) with 80 wt.% filler loading. This value is 30% greater than the electrical conductivity of a typical graphite/epoxy composite with 80 wt.% filler loading, which is 53 S/cm for the in-plane conductivity and 40 S/cm for the through-plane conductivity. The flexural strength is increased to 36.28 MPa compared to a single filler system, which is approximately 25.22 MPa. This study also found that the General Effective Media (GEM) model was able to predict the in-plane and through-plane electrical conductivities for single filler and multiple filler composites.  相似文献   

18.
The electrical conductivity of polyethersulphone (PES) insulating polymer was improved by incorporation of electrically conductive graphite and ions. An initial conducting pathway of the PES/graphite composites was formed at lower than 3 wt.% of the filler content. LiCl was found to be an effective dopant for the improvement of the electrical conductivities of the PES/graphite composites. By doping with 0.06 wt.% of LiCl the electrical conductivity was enhanced by two orders of magnitude. The enhancement resulted from intercalation of Li+ ions into interlayer spaces of the graphite. Upon intercalation, an acceptor GIC, Li-GIC, was consequently formed. The stability of the improved electrical conductivities of the composites contributed with doped-ions was assessed. The electrical conductivity of both un-doped and doped graphite/PES composites slightly increased with increasing temperature and slightly decreased by physical ageing. The enhancement of the electrical conductivities by doping ions was stable at the high temperatures.  相似文献   

19.
We present an experimental study of the self-healing ability of carbon fibre/epoxy (CF/EP) composite laminates with microencapsulated epoxy and its hardener (mercaptan) as a healing agent. Epoxy- and hardener-loaded microcapsules (average size large: 123 μm; small: 65 μm) were prepared by in situ polymerisation in an oil-in-water emulsion and were dry-dispersed at the ratio 1:1 on the surface of unidirectional carbon fabric layer. The CF/EP laminates were fabricated using a vacuum-assisted resin infusion (VARI) process. Width-tapered double cantilever beam (WTDCB) specimens were used to measure mode-I interlaminar fracture toughness of the CF/EP composites with a pre-crack in the centre plane where the microcapsules were placed. Incorporation of the dual-component healant stored in the fragile microcapsules provided the laminates with healing capability on delamination damage by recovering as much as 80% of its fracture toughness. It was also observed that the recovery of fracture toughness was directly correlated with the amount of healant covering the fracture plane, with the highest healing efficiency obtained for the laminate with large capsules.  相似文献   

20.
In this work, the influence of multi-walled carbon nanotubes (MWCNT) on electrical, thermal and mechanical properties of CNT reinforced isotactic polypropylene (iPP) nanocomposites is studied. The composites were obtained by diluting a masterbatch of 20 wt.% MWCNT with a low viscous iPP, using melt mixing. The morphology of the prepared samples was examined through SEM, Raman and XRD measurements. The effect of MWCNT addition on the thermal transitions of the iPP was investigated by differential scanning calorimetry (DSC) measurements. Significant changes are reported in the crystallization behavior of the matrix on addition of carbon nanotubes: increase of the degree of crystallinity, as well as appearance of a new crystallization peak (owing to trans-crystallinity). Dynamic mechanical analysis (DMA) studies revealed an enhancement of the storage modulus, in the glassy state, up to 86%. Furthermore, broadband dielectric relaxation spectroscopy (DRS) was employed to study the electrical and dielectric properties of the nanocomposites. The electrical percolation threshold was calculated 0.6–0.7 vol.% MWCNT from both dc conductivity and dielectric constant values. This value is lower than previous mentioned ones in literature in similar systems. In conclusion, this works provides a simple and quick way for the preparation of PP/MWCNT nanocomposites with low electrical percolation threshold and significantly enhanced mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号