首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites based on polystyrene and natural rubber at a ratio of 85/15 were prepared by melt mixing with nylon-6 fibres using an internal mixer. The loading of short nylon-6 fibre, untreated and resorcinol formaldehyde latex (RFL)-treated, was varied from 0 to 3 wt.%. Tensile and flexural test samples were punched out from sheets and tested to study the variation of mechanical and dynamic mechanical properties. The tensile behaviour of the composite has been determined at three different strain rates (4.1 × 10−4 s−1, 2 × 10−3 s−1 and 2 × 10−2 s−1). Both the tensile strength and Young’s modulus of the composite increased with strain rate. The tensile strength, tensile modulus, flexural strength and flexural modulus increased with the increase in fibre content up to 1 wt.%, above which there was a significant deterioration in the properties. The RFL-treated fibre composites showed improved mechanical properties compared to the untreated one. Dynamic mechanical analysis (DMA) showed that the storage modulus of the composite with RFL-treated fibre was better compared to the untreated one. The fibre–matrix morphology of the tensile fractured specimens was studied by scanning electron microscopy (SEM). The results suggested that the RFL treatment of nylon fibre promoted adhesion to the natural rubber phase of the blend, thereby improving the mechanical properties of the composite.  相似文献   

2.
Mechanical properties of aligned long harakeke fibre reinforced epoxy with different fibre contents were evaluated. Addition of fibre was found to enhance tensile properties of epoxy; tensile strength and Young’s modulus increased with increasing content of harakeke fibre up to 223 MPa at a fibre content of 55 wt% and 17 GPa at a fibre content of 63 wt%, respectively. The flexural strength and flexural modulus increased to a maximum of 223 MPa and 14 GPa, respectively, as the fibre content increased up to 49 wt% with no further increase with increased fibre content. The Rule of Mixtures based model for estimating tensile strength of aligned long fibre composites was also developed assuming composite failure occurred as a consequence of the fracture of the lowest failure strain fibres taking account porosity of composites. The model was shown to have good accuracy for predicting the strength of aligned long natural fibre composites.  相似文献   

3.
We investigated the effects of clay silane treatment on the fracture behaviors of clay/epoxy nanocomposites by comparing the compliance, critical fracture load, and fracture toughness of silane-treated samples with those of untreated samples. The fracture toughnesses of untreated and silane-treated clay/epoxy nanocomposites were 8.52 J/m2 and 15.55 J/m2, respectively, corresponding to an 82% increase in fracture toughness after clay silane treatment. Tensile tests were performed at ?30 °C, 25 °C, 40 °C, and 70 °C. Tensile strength and elastic modulus were higher at ?30 °C than at 25 °C for both samples. However, the tensile properties decreased as temperature increased for both samples. In particular, at 70 °C, the tensile properties were less than 10% of the original value at room temperature, independent of surface treatment. The fracture and tensile properties of silane-treated clay/epoxy nanocomposites increased due to good dispersion of the clay in epoxy and improvement in interfacial adhesive strength between epoxy and clay layers.  相似文献   

4.
All-cellulose composites are high performing green materials and solvent infusion processing makes their upscaled manufacturing possible. This study explored the use of aqueous 7 wt.% NaOH/12 wt.% urea solution as cost effective and environmentally friendly cellulose solvent for solvent infusion processing. A short dissolution time of 5 min led to all-cellulose composite laminates with a tensile strength of 114 ± 1.9 MPa and a Young’s modulus of 7.8 ± 0.5 GPa. A decrease of tensile strength and Young’s modulus with increasing dissolution time from 5 to 60 min was linked to changes in composite microstructure and fine structure of the reinforcing rayon fibres. It was shown that aqueous NaOH/urea solution is a promising alternative solvent, as it offers the advantages of shorter processing times and reduced solvent costs by 97%, while resulting in 25% stronger laminates, when compared to using ionic liquids.  相似文献   

5.
Natural silk fiber (20%) reinforced polypropylene (PP) composites were prepared by compression molding. Tensile strength, tensile modulus, bending strength, bending modulus, impact strength and hardness of the prepared composite were found 54.7 MPa, 1826.2 MPa, 58.3 MPa, 3750.7 MPa, 17.6 kJ/m2 and 95 shore A, respectively. To improve the biodegradable character of the composite, natural rubber (NR) was blended (10%, 25%, 50% by weight) with PP. It was found that the mechanical properties of the composite decrease with increasing NR in PP (except IS which increased rather decreasing). Environmental effect on the composite and degradation in various media were investigated in this study. Gamma radiation was used to increase the mechanical properties of the prepared composites. Increase in TS and BS were maximum at 250 krad dose for silk fiber/PP, silk fiber/PP:NR (90:10), silk fiber/PP:NR (75:25) and silk fiber/PP:NR (50:50) composites.  相似文献   

6.
This papers aims to characterize the influence of moisture uptake on the mechanical behaviour of unidirectional flax fibre-reinforced epoxy laminates. Monotonic and cyclic tensile tests and free vibration characterization are carried out. Results show that UD flax-epoxy composites, when exposed to hygrothermal conditioning at 70 °C and 85% RH, exhibit a diffusion kinetic which follows a one dimensional Fickian behaviour. The mass uptake at equilibrium is approximately 3.3% and the diffusion coefficient 6.5 × 10−6 m2 s−1. Water vapour sorption is shown to induce a significant change in the shape of the tensile stress-strain curve, a decrease in the dynamic elastic modulus of about 20% and a 50% increase in the damping ratio. Contrary to all expectations, water saturation does not degrade the monotonic tensile strength of such a flax-epoxy composites and leads to an increase in the fatigue strength for a high number of cycles.  相似文献   

7.
In current study, weight percentage of nano silica and nano clay and also fiber orientation have been chosen as independent variables and the affect of these variables on tensile and izod impact strength of epoxy/glass fiber/SiO2/clay hybrid laminate composite has been investigated. Central composite design (CCD) which is subset of response surface methodology has been employed to present mathematical models as function of physical factors to predict tensile and impact behavior of new mentioned hybrid nano composite and also optimizing mentioned mechanical properties. Totally 20 experiments were designed with 6 replicates at center point. The maximum and minimum value of tensile strength were 450.90 MPa and 158.16 MPa which occurred in design levels 1 and 14 respectively, also the maximum and minimum of izod impact strength were 10.47 kJ/m2 and 2.56 kJ/m2 which occurred in design levels 13 and 14 respectively. The optimization results using optimization part of Minitab software showed that the best tensile strength was obtained 488.53 MPa and occurred in 3.5 wt% of nano silica, 1.1 wt% of nano clay and 9° of fiber orientation and after preparing and testing five samples average value of tensile strength was obtained about 480 MPa. Also the results showed that the best impact strength obtained from software was 11.35 kJ/m2 and occurred in 4.03 wt% of nano clay, 5 wt% of nano silica and 0° of fiber orientation. The optimization results also showed that tensile and impact strength at optimum values improved up to 6.4% and 203.5% compared to level 1 and 14 and 6.02% and 303.6% compared to level 13 and 14 respectively. In addition, the fracture surface morphologies of the quaternary nano composites were investigated by scanning electron microscopy (SEM).  相似文献   

8.
The effects of extrusion processing temperature on the rheological, dynamic mechanical analysis and tensile properties of kenaf fiber/high-density polyethylene (HDPE) composites were investigated for low and high processing temperatures. The rheological data showed that the complex viscosity, storage and loss modulus were higher with high processing temperature. Complex viscosities of pure HDPE and 3.4 wt% composite with zero shear viscosity of ⩽2340 Pa s were shown to exhibit Newtonian behavior while composites of 8.5 and 17.5 wt% with zero shear viscosity ⩾30,970 Pa s displayed non-Newtonian behavior. The Han plots revealed the sensitivity of rheological properties with changes in processing temperature. An increase in storage and loss modulus and a decrease in mechanical loss factor were observed for 17.5 wt% composites at high processing temperature and not observed at low processing temperature. Processing at high temperature was found to improve the tensile modulus of composites but displayed diminished properties when processed at low processing temperature especially at high fiber content. At both low and high processing temperatures, the tensile strength and strain of the composite decreased with increased content of the fiber.  相似文献   

9.
The present study deals with the properties of polycarbonate (PC)/clay nanocomposites prepared through melt and solution blending at two different clay loadings (0.5 phr and 1 phr) with preserved optical transparency of PC. The organoclay was prepared by exchanging the Na+ ions presented in the clay galleries of Na-MMT with butyltriphenylphosphonium (BuTPP+) ions, and denoted as BuTPP-MMT. The outstanding thermal stability of the BuTPP-MMT (∼1.44 wt% loss at 280 °C, after 20 min), concomitant with the increase in gallery height from 1.24 nm to 1.83 nm, proved its potentiality as nanofiller for melt-blending with PC. The X-ray diffraction analysis (XRD) revealed the destruction of the ordered geometry of aluminosilicate layers in the nanocomposites. However, from direct visualization through transmission electron microscopy, a discernible amount of clay was found to be localised in PC matrix in the 1 phr clay loaded nanocomposites (TEM). The differential scanning calorimetric (DSC) study revealed a nominal increase in glass transition temperature (Tg) of the PC in the nanocomposites. The thermal stability of the nanocomposites was increased with increase in clay loading. The nanocomposites possessed improved tensile strength and modulus than that of the virgin PC and the properties were related to the amount of clay loading and degree of clay dispersion. The dynamic mechanical analysis (DMA) revealed that the storage modulus increased in both the glassy and rubbery region with increase in clay loadings in the nanocomposites. Moreover, the optical transparency of the PC was retained in the PC/clay nanocomposites without development of any colour in the nanocomposites.  相似文献   

10.
In this study, we report a novel, eco-friendly and simple method to fabricate cellulose nanofibers (CNFs)/silver nanowires (AgNWs)/acrylic resin (AR) composite electrode. CNFs with average diameter of 15 nm were disintegrated only by one time-pass grinding. Aqueous dispersion of AgNWs was embedded onto the surface of CNFs film by simple vacuum filtration. The final composite electrode was obtained by impregnating CNFs/AgNWs film to AR with the assist of adhesive tape. This electrode with AgNWs density of 134 mg/m2 showed low sheet resistance (4 Ω/sq), and high light transmittance (85%) which was 6% lower than that of neat AR. The coefficient of thermal expansion of the composite electrode was as low as 25.32 ppm K−1. The tensile strength and Young’s modulus of CNFs/AgNWs/AR composite film were 35.71 MPa and 1.63 GPa, which were about 8 and 5.8 times larger than neat AR film, respectively.  相似文献   

11.
In this study, a new method is introduced for fabricating carbon nanotube (CNT) paper, in which the solvent is sprayed on the CNT sheet while it is wound on a rotating mandrel. As the solvent evaporated, the capillary force pulls CNT closer together, resulting in a CNT paper with a high degree of alignment and a high packing density. Three batches of multi-walled CNTs with different wall thicknesses, tube diameters and lengths are utilized for synthesizing highly oriented CNT papers. It is found that CNTs with smallest diameter of 8 nm form strongest CNT paper with a tensile strength of 563 MPa and a tensile modulus of 15 GPa, while that made with CNTs of 10 nm diameter shows the highest electrical conductivity of 5.5 × 104 S/m.  相似文献   

12.
Epoxy resins are important matrices for composites. Carboxylic nitrile-butadiene nano-rubber (NR) particles are employed to improve the tensile strength and fracture toughness at 77 K of diglycidyl ether of bisphenol-F epoxy using diethyl toluene diamine as curing agent. It is shown that the cryogenic tensile strength and fracture toughness are simultaneously enhanced by the addition of NR. Also, the fracture toughness at room temperature (RT) is enhanced by the addition of NR. On the other hand, the tensile strength at RT first increases and then decreases with further increasing the NR content up to 5 phr. 5 phr NR is the proper content, which corresponds to the simultaneous enhancements in the tensile strength and fracture toughness at RT. Moreover, the comparison of mechanical properties between 77 K and room temperature indicates that the tensile strength, Young’s modulus and fracture toughness at 77 K are higher than those at RT but the failure strain shows the opposite results. The results are properly explained by the SEM observation.  相似文献   

13.
In this paper, a comparative study on the tensile properties of clay reinforced polypropylene (PP) nanocomposites (PPCN) and chopped basalt fiber reinforced PP–clay nanocomposites (PPCN-B) is presented. PP matrix are filled with 1, 3 and 5 wt.% of nanoclays. The ultimate tensile strength, yield strength, Young’s modulus and toughness are measured at various temperature conditions. The thermal conditions are included the room temperature (RT), low temperature (LT) and high temperature (HT). The basal spacing of clay in the composites is measured by X-ray diffraction (XRD). Nanoscale morphology of the samples is observed by transmission electron microscopy (TEM). Addition of nanoclay improves the yield strength and Young’s modulus of PPCN and PPCN-B; however, it reduces the ultimate tensile strength. Furthermore, the addition of chopped basalt fibers to PPCN improves the Young’s modulus of the composites. The Young’s modulus and the yield strength of both PPCN and PPCN-B are significantly high at LT (−196 °C), descend at RT (25 °C) and then low at HT (120 °C).  相似文献   

14.
The objective of this study was to investigate the effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of hemp fibre/epoxy composites. Pectin removal by EDTA and endo-polygalacturonase (EPG) removed epidermal and parenchyma cells from hemp fibres and improved fibre separation. Hemicellulose removal by NaOH further improved fibre surface cleanliness. Removal of epidermal and parenchyma cells combined with improved fibre separation decreased composite porosity factor. As a result, pectin removal increased composite stiffness and ultimate tensile strength (UTS). Hemicellulose removal increased composite stiffness, but decreased composite UTS due to removal of xyloglucans. In comparison of all fibre treatments, composites with 0.5% EDTA + 0.2% EPG treated fibres had the highest tensile strength of 327 MPa at fibre volume content of 50%. Composites with 0.5% EDTA + 0.2% EPG  10% NaOH treated fibres had the highest stiffness of 43 GPa and the lowest porosity factor of 0.04.  相似文献   

15.
A carbon-fiber–reinforced thermoplastic (polyamide 6 with 20 wt.% carbon fiber addition) and an aluminum alloy (A5052) were joined using friction lap joining. The joint characteristics were evaluated to investigate the effects of A5052 surface treatments and the joining speed on the joint properties. Carbon-fiber–reinforced thermoplastic and A5052 were joined via an interfacial magnesium oxide layer. Surface grinding of the A5052 generated the aluminum hydroxide on the alloy surface and increased the tensile shear strength of the joint. The tensile shear strength increased as the joining speed increased from 100 to 1600 mm min1, and decreased thereafter.  相似文献   

16.
Soybean oil-based thermosets from acrylated epoxidized soybean oil (AESO) with a highly reactive vinyl monomer, N-vinyl-2-pyrrolidone (NVP), as crosslinking agent to replace styrene (St) were formulated for the fabrication of hemp fiber composites. The theoretical miscibility of NVP–AESO and St–AESO systems were discussed based on the group contribution method. The AESO resin with 30 wt% NVP exhibited a slightly higher viscosity than the counterpart with St, while the maximum curing temperature of the former was considerably lower than that of the latter. The composites from 20 wt% NVP resin gained comparable mechanical properties and higher glass transition temperature (Tg) to the composites with 30 wt% St. Further increase in NVP usage to 40 wt% resulted in the composites with higher tensile strength, tensile modulus, flexural strength, flexural modulus, storage modulus, and Tg of 29.6%, 22.4%, 22.5%, 20.6%, 21.6%, and 47.2%, respectively, when compared to those of the St-based composites.  相似文献   

17.
Research on flexible thermal interface materials (TIMs) has shown that the interconnected network of graphene foam (GF) offers effective paths of heat transportation. In this work, a variant amount of multilayer graphene flakes (MGFs) was added into 0.2 vol% GF/polydimethylsiloxane (PDMS) composite. A remarkable synergistic effect between MGF and GF in improving thermal conductivity of polymer composites is achieved. With 2.7 vol% MGFs, the thermal conductivity of MGF/GF/PDMS composite reaches 1.08 W m−1 K−1, which is 80%, 184% and 440% higher than that of 2.7 vol% MGF/PDMS, GF/PDMS composites and pure PDMS, respectively. The MGF/GF/PDMS composite also shows superior thermal stability. The addition of MGFs and GF decreases slightly the elongation at break, but observably increases the Young’s modulus and tensile strength of composites compared with pure PDMS. The good performance of MGF/GF/PDMS composite makes it a good TIM for possible application in thermal management of electronics.  相似文献   

18.
The focus of this work was to produce short (random and aligned) and long (aligned) industrial hemp fibre reinforced polylactic acid (PLA) composites by compression moulding. Fibres were treated with alkali to improve bonding with PLA. The percentage crystallinity of PLA in composites was found to be higher than that for neat PLA and increased with alkali treatment of fibres which is believed to be due to the nucleating ability of the fibres. Interfacial shear strength (IFSS) results demonstrated that interfacial bonding was also increased by alkali treatment of fibres which also lead to improved composite mechanical properties. The best overall properties were achieved with 30 wt.% long aligned alkali treated fibre/PLA composites produced by film stacking technique leading to a tensile strength of 82.9 MPa, Young’s modulus of 10.9 GPa, flexural strength of 142.5 MPa, flexural modulus of 6.5 GPa, impact strength of 9 kJ/m2, and a fracture toughness of 3 MPa m1/2.  相似文献   

19.
Graphene nanopowder (GNP) and multi-walled carbon nanotube (MWCNT)-filled epoxy thin-film composites were fabricated using ultrasonication and the spin coating technique. The effect of sonication time (10, 20 and 30 min) and GNP loading (0.05–1 vol%) on the tensile and electrical properties of GNP/epoxy thin-film composites was investigated. The addition of GNP decreased the material’s tensile strength and modulus. However, among the tested samples, the GNP/epoxy composites produced using 20 min of sonication time had a slightly higher tensile strength and modulus, with a lower electrical percolation threshold volume fraction. The effect of sonication time was supported by morphological analysis, which showed an improvement in GNP dispersion with increased sonication time. However, GNP deformation was observed after a long sonication time. The GNP/epoxy composites at different filler loadings showed higher electrical properties but slightly lower tensile properties compared with the MWCNT/epoxy composites fabricated using 20 min of sonication time.  相似文献   

20.
An organomodified surface nanoclay reinforced epoxy glass-fiber composite is evaluated for properties of mechanical strength, stiffness, ductility and fatigue life, and compared with the pristine or epoxy glass-fiber composite material not reinforced with nanoclays. The results from monotonic tensile tests of the nanoclay reinforced composite material at 60 °C in air showed an average 11.7% improvement in the ultimate tensile strength, 10.6% improvement in tensile modulus, and 10.5% improvement in tensile ductility vs. these mechanical properties obtained for the pristine material. From tension–tension fatigue tests at a stress-ratio = +0.9 and at 60 °C in air, the nanoclay reinforced composite had a 7.9% greater fatigue strength and a fatigue life over a decade longer or 1000% greater than the pristine composite when extrapolated to 109 cycles or a simulated 10-year cyclic life. Electron microscopy and Raman spectroscopy of the fracture and failure modes of the test specimens were used to support the results and conclusions. This nanocomposite could be used as a new and improved material for repair or rehabilitation of external surface wall corrosion or physical damage on piping and vessels found in petrochemical process plants and facilities to extend their operational life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号