首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Papermaking techniques were used to produce graphite/carbon fiber/cellulose fiber composite papers with tunable electrical conductivity and good mechanical properties.  相似文献   

2.
Nanocellulose has gained attention in recent times due to their light weight, high strength, stiffness, biodegradability and renewability. Natural fibres have been used as reinforcement in composites for past many years, but the use of nanocellulose as reinforcement in composites is relatively new. The main challenges of preparing nanocellulose based composites include (i) generation of nanocellulose from natural resources, (ii) production in larger scale, (iii) enhancing compatibility with hydrophobic polymers, and (iv) achieving uniform dispersion in polymer matrices. These challenges have encouraged researchers to innovate efficient processes and techniques to utilise the maximum benefit of such green nanoscopic materials. In situ fabrication of cellulose nanocomposites is one such technique of achieving uniform nanocellulose dispersion in polymer matrices and obtaining a stronger filler/matrix interface. This review summarises the recent progress in the field of in situ processing of cellulose nanocomposites.  相似文献   

3.
In this paper, two kinds of clay/carbon nanofiber hybrid sheets containing 0.05 wt% and 0.20 wt% of Cloisite Na+ clay, were fabricated through a high-pressure filtration system. These sheets were integrated onto the surface of laminated composites like traditional continuous fiber mats through vacuum-assisted resin transfer molding process. The fire performance of the laminated composites was evaluated with cone calorimeter tests under an external radiant heat flux of 50 kW/m2. Their residues were analyzed with scanning electron microscopy and thermal gravimetric analyses. It was found that the clay/nanofiber hybrid sheets survived on the combustion surface of composites and significantly reduced the heat release rate by 60.5%. The protective clay layer reduces the heat release rates and the nanofiber network reinforces the clay layer against the air bubbling and melt flow of the products degraded from the polymer resin. The clay/carbon nanofiber hybrid sheet combines the barrier and insulator effects of the clays with the re-emitting heat effect of carbon nanofibers on the combustion surface of composites.  相似文献   

4.
Graphene (GN)-based composite paper containing 10 wt.% cellulose nanowhiskers (CNWs) exhibiting a tensile strength of 31.3 MPa and electrical conductivity of 16 800 S/m was prepared by ultrasonicating commercial GN powders in aqueous CNWs suspension. GN/CNWs freestanding paper was applied to prepare the sandwiched films by dip coating method. The sandwiched films showed enhanced tensile strength by over two times higher than the neat resins. The moduli of the sandwiched films were around 300 times of the pure resins due to the high content of GN/CNWs paper. The glass transition temperature of the sandwiched films increased from 51.2 °C to 57.1 °C for pure epoxy (E888) and SF (E888), and 49.8 °C to 64.8 °C for pure epoxy (650) and SF (650), respectively. The bare conductive GN/CNWs paper was well protected by the epoxy resin coating, which is promising in the application as anti-static materials, electromagnetic interference (EMI) shielding materials.  相似文献   

5.
Electrically percolative composites of thermoplastic elastomers (TPE) filled with different concentrations of carbon nanotubes (CNT), carbon black (CB) and (CNT–CB) hybrid fillers were fabricated by melt blending. The effects of filler type and composition on the electrical properties of the percolative TPE composites were studied. Percolation threshold for CB-, CNT- and (CNT–CB)-based composites was found to be 0.06, 0.07 and 0.07 volume fraction respectively. Compared to CB-based composites and earlier reported results, CNT- and (CNT–CB)-based ones revealed an unexpectedly high percolation threshold, which otherwise considered an unwelcome phenomenon, lead to distinct and rare percolation characteristics of CNT filled percolative composites like per-percolation conductivity and a relatively steep percolation curves. CB-based composites showed a comparatively sharp insulator–conductor transition curve complementing the percolation characteristics CNT- and (CNT–CB)-based composites. Percolation threshold conductivity of the fillers was in the order of CB > CNT > (CNT–CB), while maximum attained conductivities followed the order of CNT > (CNT–CB) > CB. Conductivity order of fillers not only denied much reported synergic effect in (CNT–CB) filler but also highlighted the effect of percolation characteristics on the outcome of conductivity values. Results obtained were of theoretical as well as practical importance and were explained in the context of filler morphology and different dispersion characteristics of the carbon based fillers.  相似文献   

6.
In situ polymerisation provides a route to polystyrene (PS) matrix composites reinforced with aligned multi-walled carbon nanotubes (MWNTs). As shown, fully densified composites can be prepared; by varying the number of layers of aligned MWNT arrays, desired thickness of the composite can be manufactured. These aligned composites have characteristic anisotropic electrical and thermal properties.  相似文献   

7.
This review addresses the recent developments of the processing of cellulose nanocomposites, focusing on the most used techniques, including solution casting, melt-processing of thermoplastic cellulose nanocomposites and resin impregnation of cellulose nanopapers using thermoset resins. Important techniques, such as partially dissolved cellulose nanocomposites, nanocomposite foams reinforced with nanocellulose, as well as long continuous fibers or filaments, are also addressed. It is shown how the research on cellulose nanocomposites has rapidly increased during the last 10 years, and manufacturing techniques have been developed from simple casting to these more sophisticated methods. To produce cellulose nanocomposites for commercial use, the processing of these materials must be developed from laboratory to industrially viable methods.  相似文献   

8.
Native cellulose fibers were surface modified by poly(N,N-dimethyl aminoethyl methacrylate) (PDMAEMA) to generate an anion adsorbent, which was characterized by scanning electron microscopy, fourier transform infrared spectroscopy and elemental analyzer. This adsorbent had high efficiency in removal of F, AsO2 and AsO43− from aqueous solutions, even at low initial concentrations. Adsorption kinetics showed that the adsorption equilibrium could be reached within 1 min. The distribution coefficient did not change with adsorbent dose, indicating the adsorption was a homogenous process. Langmuir, Freundlich and Temkin models were used to fit the adsorption isotherms. Based on the parameters calculated from the models, the adsorption capacity was in the order of AsO43− ? AsO2 > F, and the adsorption was a favorable process. Compared with Freundlich and Temkin models, the isotherms followed Langmuir model a little better.  相似文献   

9.
Carbon materials, such as graphite oxides, carbon nanotubes and graphenes, have exceptional thermal conductivity, which render them excellent candidates as fillers in advanced thermal interface materials for high density electronics. In this paper, these carbon materials were functionalized with 4,4′-diaminodiphenyl sulphone (DDS), to enhance the bonding between the carbon materials and the resin matrix. Their visibly different properties were investigated. It seems that DDS-functionalization can obviously improve the interfacial heat transfer between the carbon materials and the epoxy matrix. The thermal conductivity enhancement of D-Graphene composites (0.493 W/m K) was about 30% higher than that of D-MWNTs composites (0.387 W/m K) at 0.5 vol.% loading. The different effects among EGO, D-EGO, MWNTs, D-MWNTs and D-Graphene in polymer composites were also discussed. It was demonstrated that DDS-functionalized carbon materials had an obvious effect on the thermal performances of composite materials and were more effective in thermal conductivity enhancement.  相似文献   

10.
Review of the mechanical properties of carbon nanofiber/polymer composites   总被引:1,自引:0,他引:1  
In this paper, the mechanical properties of vapor grown carbon nanofiber (VGCNF)/polymer composites are reviewed. The paper starts with the structural and intrinsic mechanical properties of VGCNFs. Then the major factors (filler dispersion and distribution, filler aspect ratio, adhesion and interface between filler and polymer matrix) affecting the mechanical properties of VGCNF/polymer composites are presented. After that, VGCNF/polymer composite mechanical properties are discussed in terms of nanofibers dispersion and alignment, adhesion between the nanofiber and polymer matrix, and other factors. The influence of processing methods and processing conditions on the properties of VGCNF/polymer composite is also considered. At the end, the possible future challenges for VGCNF and VGCNF/polymer composites are highlighted.  相似文献   

11.
This study examined the mechanical properties of aligned multi-walled carbon nanotube (CNT)/epoxy composites processed using a hot-melt prepreg method. Vertically aligned ultra-long CNT arrays (forest) were synthesized using chemical vapor deposition, and were converted to horizontally aligned CNT sheets by pulling them out. An aligned CNT/epoxy prepreg was fabricated using hot-melting with B-stage cured epoxy resin film. The resin content in prepreg was well controlled. The prepreg sheets showed good drapability and tackiness. Composite film specimens of 24-33 μm thickness were produced, and tensile tests were conducted to evaluate the mechanical properties. The resultant composites exhibit higher Young’s modulus and tensile strength than those of composites produced using conventional CNT/epoxy mixing methods. For example, the maximum elastic modulus and ultimate tensile strength (UTS) of a CNT (21.4 vol.%)/epoxy composite were 50.6 GPa and 183 MPa. These values were, respectively, 19 and 2.9 times those of the epoxy resin.  相似文献   

12.
In the present work, in situ polymerizations of sulfonated polyoxadiazole through a polycondensation reaction of A–A (hydrazine sulphate) and B–B (aromatic dicarboxylic acid) monomers with carbon nanotubes in poly(phosphoric acid) were performed. The structures of composites were characterized by elemental analysis, Raman and FTIR spectroscopy. The sulfonated polyoxadiazole composites with high molecular weight (in the order of magnitude of 105 g/mol) are soluble in organic solvents and can be cast as dense films. They exhibit good mechanical properties (storage modulus up to around 4 GPa at 300 °C) and an electrical conductivity in the order of 10−5 S m−1. The composites can be used at temperatures as high as 470 °C.  相似文献   

13.
A low-density three-dimensional cellular-matrix composite reinforced with woven carbon fabric (3DCMC), was fabricated by means of a pressure-quenching molding technique with nitrogen gas as the blowing agent. Epoxy resins in the interstices of yarns in the 3DCMC samples were vacated during the foaming process and needle shaped voids were also generated between fibers in yarns. The average density of the 3DCMC samples was about 103 kg/m3, and their density reduction was 28–37% compared with a regular matrix composite with the same preform. The 3DCMC has 32–42% higher specific tensile strength, 14–37% greater specific tensile modulus, a lower specific flexure strength but 35% higher specific tangent modulus in 3-point bending, a 30–40% higher specific impact energy absorption at an impact velocity around 120 m/s and a similar specific energy absorption at about 220 m/s. Meanwhile, the 3-point bending and impact test results of 3DCMC showed that they have different fracture mechanisms from that of 3DRMC.  相似文献   

14.
Cellulose nanocrystal (CNC) reinforced poly(vinyl alcohol) (PVA) hydrogels with a water content of ∼92% were successfully prepared with glutaraldehyde (GA) as a cross-linker. The effects of the CNC content on the thermal stability, swelling ratio and mechanical and viscoelastic properties of the cross-linked hydrogels were investigated. The compressive strength at 60% strain for the hydrogels with 1 wt% CNCs increased by 303%, from 17.5 kPa to 53 kPa. The creep results showed that the addition of CNCs decreased the creep elasticity due to molecular chain restriction. The almost complete strain recovery (∼97%) after fixed load removal for 15 min was observed from the hydrogels with CNCs, compared with 92% strain recovery of the neat cross-linked PVA hydrogels. The incorporation of CNCs did not affect the swelling ratio and thermal stability of the hydrogels. These results suggest the cross-linked CNC-PVA hydrogels have potential for use in biomedical and tissue engineering applications.  相似文献   

15.
In the current study we investigated the effect of carbon nanotubes (CNTs) addition on the erosive wear response of epoxy resin and carbon fibre reinforced laminates (CFRPs) and demonstrated the positive synergy of CNTs and carbon fibres, which resulted in almost 50% decrease of the erosion rate (ER) of the CFRPs at high impact angles (90°). Incorporation of CNTs led in slight increase of the ER of the epoxy systems, especially at low impact angles. The relative fibre orientation in the CFRPs had a negligible effect on the erosive wear response mainly due to the quasi isotropic nature of the tested CFRPs. Based on the erosion efficiency parameter the response of the epoxy systems was characterised as semi-brittle, while CFRPs behaved in a brittle manner. Scanning electron micrograph provided evidence that the presence of CNTs reduced the amount of broken and/or detached fibres in the case of CFRPs.  相似文献   

16.
This paper examines the recent advancements in the science and technology of carbon nanotube (CNT)-based fibers and composites. The assessment is made according to the hierarchical structural levels of CNTs used in composites, ranging from 1-D to 2-D to 3-D. At the 1-D level, fibers composed of pure CNTs or CNTs embedded in a polymeric matrix produced by various techniques are reviewed. At the 2-D level, the focuses are on CNT-modified advanced fibers, CNT-modified interlaminar surfaces and highly oriented CNTs in planar form. At the 3-D level, we examine the mechanical and physical properties CNT/polymer composites, CNT-based damage sensing, and textile assemblies of CNTs. The opportunities and challenges in basic research at these hierarchical levels have been discussed.  相似文献   

17.
In the present work, carbon nanotube (CNT) fibers had been embedded to glass fiber reinforced polymers (GFRP) for the structural health monitoring of the composite material. The addition of the conductive CNT fiber to the non-conductive GFRP material aims to enhance its multi-function ability; the test specimen’s response to mechanical load and the insitu CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. It is the first time this fiber is used in composite materials for sensing purposes; CNT fiber is easy to be embedded and does not downgrade the material’s mechanical properties. Various incremental loading–unloading steps had been applied to the manufactured specimens in tension as well as in three-point bending tests. The CNT fiber worked as a sensor in both, tensile and compression loadings. A direct correlation between the mechanical loading and the electrical resistance change had been established for the investigated specimens. For high stress (or strain) level loadings, residual resistance measurements of the CNT fiber were observed after unloading. Accumulating damage to the composite material had been calculated and was correlated to the electrical resistance readings. The established correlation between these parameters changed according to the material’s loading history.  相似文献   

18.
To assess the effect of carbon nanotube (CNT) grafting on interfacial stress transfer in fiber composites, CNTs were grown upon individual carbon T-300 fibers by chemical vapor deposition. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on both pristine and CNT-decorated fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Despite the fiber strength degradation resulting from the harsh CNT growth conditions, the CNT-modified fibers lead to a twofold increase in interfacial shear strength which correlates with the nearly threefold increase in apparent fiber diameter resulting from CNT grafting. These observations corroborate recently published studies with other CNT-grafted fibers. An analysis of the relative contributions to the interfacial strength of the fiber diameter and strength due to surface treatment is presented. It is concluded that the common view whereby an experimentally observed shorter average fragment length leads to a stronger interfacial adhesion is not necessarily correct, if the treatment has changed the fiber tensile strength or its diameter.  相似文献   

19.
Aramid fibers reinforced silica aerogel composites (AF/aerogels) for thermal insulation were prepared successfully under ambient pressure drying. The microstructure showed that the aramid fibers were inlaid in the aerogel matrix, acting as the supporting skeletons, to strengthen the aerogel matrix. FTIR revealed AF/aerogels was physical combination between aramid fibers and aerogel matrix without chemical bonds. The as prepared AF/aerogels possessed extremely low thermal conductivity of 0.0227 ± 0.0007 W m−1 K−1 with the fiber content ranging from 1.5% to 6.6%. Due to the softness, low density and remarkable mechanical strength of aramid fibers and the layered structure of the fiber distribution, the AF/aerogels presented nice elasticity and flexibility. TG–DSC indicated the thermal stability reaching approximately 290 °C, can meet the general usage conditions, which was mainly depended on the pure silica aerogels. From mentioned above, AF/aerogels present huge application prospects in heat preservation field, especially in piping insulation.  相似文献   

20.
This paper reports on the recent progress towards the development of power composite structures capable of energy harvesting and storage in addition to load bearing. The process of physically embedding all-solid-state thin-film lithium energy cells into a carbon fiber reinforced plastic (CFRP) and the performance of the resulting power composites are reported. The embedded thin-film lithium-ion energy cells did not significantly alter the mechanical properties of the composite (modulus and strength) under quasi-static uniaxial loading conditions. The embedded energy cells performed at baseline charge/discharge levels up to a loading of about 50% of the CFRP tensile strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号