首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Polyhedral oligomeric silsesquioxane grafting thermally conductive silicon carbide particle (POSS-g-SiCp) fillers, are performed to fabricate highly thermally conductive ultra high molecular weight polyethylene (UHMWPE) composites combining with optimal dielectric properties and excellent thermal stabilities, via mechanical ball milling followed by hot-pressing method. The POSS-g-SiCp/UHMWPE composite with 40 wt% POSS-g-SiCp exhibits relative higher thermal conductivity, lower dielectric constant and more excellent thermal stability, the corresponding thermally conductive coefficient of 1.135 W/mK, the dielectric constant of 3.22, and the 5 wt% thermal weight loss temperature of 423 °C, which holds potential for packaging and thermal management in microelectronic devices. Agari’s semi-empirical model fitting reveals POSS-g-SiCp fillers have strong ability to form continuous thermally conductive networks.  相似文献   

2.
We found that the thermal conductivity of polymer composites was synergistically improved by the simultaneous incorporation of graphene nanoplatelet (GNP) and multi-walled carbon nanotube (MWCNT) fillers into the polycarbonate matrix. The bulk thermal conductivity of composites with 20 wt% GNP filler was found to reach a maximum value of 1.13 W/m K and this thermal conductivity was synergistically enhanced to reach a maximum value of 1.39 W/m K as the relative proportion of MWCNT content was increased but the relative proportion of GNP content was decreased. The synergistic effect was theoretically estimated based on a modified micromechanics model where the different shapes of the nanofillers in the composite system could be taken into account. The waviness of the incorporated GNP and MWCNT fillers was found to be one of the most important physical factors determining the thermal conductivity of the composites and must be taken into consideration in theoretical calculations.  相似文献   

3.
This study investigates the thermal conductivity of epoxy composites containing two hybrid fillers which are multi-walled carbon nanotubes (MWCNTs) and aluminum nitride (AlN). To form a covalent bonds between the fillers and the epoxy resin, poly(glycidyl methacrylate) (PGMA) were grafted onto the surface of nano-sized MWCNTs via free radical polymerization and micro-sized AlN was modified by zirconate coupling agent. Results show that functionalized fillers improve thermal conductivity of epoxy composites, due to the good dispersion and interfacial adhesion, which is confirmed by scanning electron microscope. Furthermore, the hybrid fillers provide synergetic effect on heat conductive networks. The thermal conductivity of epoxy composites containing 25 vol.% modified AlN and 1 vol.% functionalized MWCNTs is 1.21 W/mK, comparable to that of epoxy composites containing 50 vol.% untreated AlN (1.25 W/mK), which can reduce the half quantity of AlN filler used.  相似文献   

4.
Conducting polymer composites (CPC) were prepared with an ethylene–octene copolymer (EOC) matrix and with either carbon fibers (CFs) or multiwall carbon nanotubes (MWCNTs) as fillers. Their electrical and thermal conductivities, mechanical properties and thermal stabilities were evaluated and compared. CF/EOC composites showed percolation behavior at a lower filler level (5 wt.%) than the MWCNT/EOC composites (10 wt.%) did. Alternating current (AC) conductivity and real part of permittivity (dielectric constant) of these composites were found to be frequency-dependent. Dimensions and electrical conductivities of individual fillers have a great influence on the conductivities of the composites. CF/EOC composites possessed higher conductivity than the MWCNT-composites at all concentrations, due to the higher length and diameter of the CF filler. Both electrical and thermal conductivities were observed to increase with increasing filler level. Tensile moduli and thermal stabilities of both (CF/EOC and MWCNT/EOC) composites increase with rising filler content. Improvements in conductivities and mechanical properties were achieved without any significant increase in the hardness of the composites; therefore, they can be potentially used in pressure/strain sensors. Thermoelectric behavior of the composites was also studied. Accordingly, CF and MWCNT fillers are versatile and playing also other roles in their composites than just being conducting fillers.  相似文献   

5.
Polyacrylate composites with various fillers such as multi-walled carbon nanotube (CNT), aluminum flake (Al-flake), aluminum powders and Al–CNT were prepared by a ball milling. The thermal decomposition temperature increased by as much as 64 °C for polyacrylate/Al-flake 70 wt% composite compared to polyacrylate. The thermal conductivity of polyacrylate/Al–CNT composites increased from 0.50 to 1.67 W/m K as the Al–CNT content increases from 50 to 80 wt%. The thermal conductivity of the composite sheet increases with the sheet thickness. At the given filler concentration (90 wt%), the composite filled with aluminum powder of 13 μm has a higher thermal conductivity than the one filled 3 μm powder, and the composite filled with mixture of two powders showed a synergistic effect on the thermal conductivity. The morphology indicates that the dispersion of CNT in the polyacrylate/Al-flake + CNT composite is not perfect, and agglomeration of CNTs was observed.  相似文献   

6.
This study aims to investigate experimentally the effects of aspect ratio (length/diameter ratio) and concentration of multiwalled carbon nanotubes (MWCNTs) on thermal properties of high density polyethylene (HDPE) based composites. The aspect ratios of two types of MWCNT fillers are in the range of 200–400 and 500–3000. Composite samples were prepared by melt mixing up to weight fraction of 19% filler content, followed by a compression molding. Measurements of density, specific heat and thermal diffusivity (by modulated photothermal radiometry, PTR) were performed and effective thermal conductivities ke of nanocomposites were calculated using these values. The results show that the composites containing MWCNTs with higher aspect ratio have higher thermal conductivities than the ones with lower aspect ratio. In terms of conductivity enhancement ke/km  1, the results indicate that MWCNTs with higher aspect ratio provide three to fourfold larger enhancement than the ones with lower aspect ratio, at low filler concentrations.  相似文献   

7.
Multi-walled carbon nanotubes functionalized with amino groups (MWCNT-NH2) were prepared via the chemical modification of the carboxyl groups introduced on the surface of MWCNT. The synthesized materials and untreated micro-aluminum nitride (micro-AlN) particles were embedded in a polymer resin, viz. epoxy-terminated dimethyl siloxane. The thermal diffusivity and conductivity of all of the composites continuously improved with increasing the content of fillers. A thermal conductivity of 3.81 W/mK was achieved at an MWCNT-NH2 loading of 3 wt% and micro-AlN loading of 70 wt% while their flexibility was maintained. This result is due to the high aspect ratio of the MWCNT-NH2 which allows a heat conductive percolation network to be established between the micro-AlN particles. Also, all of the composites fabricated by the optimized process endured about 200,000 bending cycles without rupturing or losing their thermal conductivity.  相似文献   

8.
Aluminum-hydroxide-covered multi-walled carbon nanotubes (A–MWCNT) were fabricated as a thermally conductive material. The thermal conductivity of A–MWCNT was estimated based on Casimir theory. The effective thermal conductivity of A–MWCNT was estimated at about ∼26 W/mK. The thermal conductivity of A–MWCNT/epoxy-terminated polydimethylsiloxane (ETDS) composite was examined as a function of A–MWCNT loading, and the results showed the maximum value at 1.5 wt% of A–MWCNT loading, above which it decreased slightly. The effective medium approximation (EMA) developed by Maxwell–Garnett (M–G) was used to analyze the thermal conducting behavior of the composite. The experimental results showed negative deviation from the expected thermal conductivity, ke, beyond 1.5 wt% of A–MWCNT loading, because the composites containing A–MWCNT were strongly affected by interfacial resistance. The interfacial resistance value calculated from M–G approximation increased when filler loading was higher than 1.5 wt% because of the folded and partially agglomerated A–MWCNT along with insufficient interfacial interactions.  相似文献   

9.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

10.
In this investigation, Polyetherimide (PEI) reinforced with multi-walled carbon nanotube (MWCNT) using novel melt blending technique. Surface of MWCNTs are modified by acid treatment as well as by plasma treatment. PEI nano composites with 2 wt% treated MWCNT shows about 15% improvement in mechanical properties when compared to unfilled PEI. The thermal decomposition kinetics of PEI/MWCNT nano composites has been critically analyzed by using Coats – Redfern model. The increase in activation energy for thermal degradation by 699 kJ/mol for 2 wt% MWCNT implies improvement in the thermal properties of PEI. Studies under Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscopy (TEM) depict significant interfacial adhesion with uniform dispersion of MWCNT in polymer matrix due to surface functionalization. 0.5 wt% chemically modified MWCNT shows typical alignment of MWCNT. There is a significant improvement in mechanical properties and thermal properties for surface functionalized MWCNT reinforced.  相似文献   

11.
We report on heat conduction properties of thermal interface materials with self-aligning “magnetic graphene” fillers. Graphene enhanced nano-composites were synthesized by an inexpensive and scalable technique based on liquid-phase exfoliation. Functionalization of graphene and few-layer-graphene flakes with Fe3O4 nanoparticles allowed us to align the fillers in an external magnetic field during dispersion of the thermal paste to the connecting surfaces. The filler alignment results in a strong increase of the apparent thermal conductivity and thermal diffusivity through the layer of nano-composite inserted between two metallic surfaces. The self-aligning “magnetic graphene” fillers improve heat conduction in composites with both curing and non-curing matrix materials. The thermal conductivity enhancement with the oriented fillers is a factor of two larger than that with the random fillers even at the low ~ 1 wt.% of graphene loading. The real-life testing with computer chips demonstrated the temperature rise decrease by as much as 10 °C with use of the non-curing thermal interface material with ~ 1 wt.% of the oriented fillers. Our proof-of-concept experiments suggest that the thermal interface materials with functionalized graphene and few-layer-graphene fillers, which can be oriented during the composite application to the surfaces, can lead to a new method of thermal management of advanced electronics.  相似文献   

12.
Highly conducting polyaniline (PANI)–multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by in situ polymerization. The FTIR and XRD show systematic shifting of the characteristic bands and peaks of PANI, with the increase in MWCNT phase, suggesting significant interaction between the phases. The SEM and TEM pictures show thick and uniform coating of PANI over surface of individual MWCNT. Based on observed morphological features in SEM, the probable formation mechanism of these composites has been proposed. The electrical conductivity of PANI–MWCNT composite (19.7 S cm?1) was even better than MWCNT (19.1 S cm?1) or PANI (2.0 S cm?1). This can be ascribed to the synergistic effect of two complementing phases (i.e. PANI and MWCNT). The absorption dominated total shielding effectiveness (SE) of ?27.5 to ?39.2 dB of these composites indicates the usefulness of these materials for microwave shielding in the Ku-band (12.4–18.0 GHz). These PANI coated MWCNTs with large aspect ratio are also proposed as hybrid conductive fillers in various thermoplastic matrices, for making structurally strong microwave shields.  相似文献   

13.
Polyimide (PI) composites containing one-dimensional SiC nanowires grown on two-dimensional graphene sheets (1D–2D SiCNWs-GSs) hybrid fillers were successfully prepared. The PI/SiCNWs-GSs composites synchronously exhibited high thermal conductivity and retained electrical insulation. Moreover, the heat conducting properties of PI/SiCNWs-GSs films present well reproducibility within the temperature range from 25 to 175 °C. The maximum value of thermal conductivity of PI composite is 0.577 W/mK with 7 wt% fillers loading, increased by 138% in comparison with that of the neat PI. The 1D SiC nanowires grown on the GSs surface prevent the GSs contacting with each other in the PI matrix to retain electrical insulation of PI composites. In addition, the storage modulus and Young’s modulus of PI composites are remarkably improved in comparison with that of the neat PI.  相似文献   

14.
Graphene oxide (GO) was added to a polymer composites system consisting of surfactant-wrapped/doped polyaniline (PANI) and divinylbenzene (DVB). The nanocomposites were fabricated by a simple blending, ultrasonic dispersion and curing process. The new composites show higher conductivity (0.02–9.8 S/cm) than the other reported polymer system filled with PANI (10−9–10−1 S/cm). With only 0.45 wt% loading of GO, at least 29% enhancement in electric conductivity and 29.8% increase in bending modulus of the composites were gained. Besides, thermal stability of the composites was also improved. UV–Vis spectroscopy, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) revealed that addition of GO improves the dispersion of PANI in the polymer composite, which is the key to realize high conductivity.  相似文献   

15.
The electrical conductivity of graphene, multi-wall carbon nanotubes, carbon black nanopowders and graphite powder is characterized using paper-like films and by means of powder compression. The large difference in surface area of these materials results in different packing density and number of contact spots, influencing the macroscopic conductivity of the compacts during powder compression. The results are compared with the percolation threshold and final conductivity of polypropylene (PP) composites, using latex technology for the incorporation of the carbon fillers in the polymer. Even though the PP composites produced in this work exhibit percolation thresholds as low as 0.3 wt.%, the final conductivity for all the composites is below 1.5 S/m. Reasons why the high value of ∼103 S/m, which is obtained for graphene- and nanotube-based paper films or graphite compacts, is not reached for the composites are investigated.  相似文献   

16.
Highly filled charcoal powder reinforced ultra-high molecular weight polyethylene (UHMWPE) composites with tunable electrical conductivity and good mechanical properties were prepared using extrusion and hot-compression techniques. Three kinds of charcoal carbonized under various temperatures were used in this study. The scanning electron microscopy showed that charcoal powder was dispersed uniformly in the UHMWPE matrix and strong interfacial interaction was achieved. The tensile test results showed that with the incorporation of charcoal powder, the tensile strength increased by 325%, 262% and 203% respectively compared to neat UHMWPE. Furthermore, the composites containing 70 wt.% charcoal powder (above 700 °C) exhibited good electrical conductivity, which is adequate for many electrical applications. It was obvious that the storage modulus of all the composites increased remarkably with the incorporation of charcoal powder, E′ reached 30.2, 26.8 and 25.9 GPa for samples PC1100/UHMWPE, AC1100/UHMWPE and BC1100/UHMWPE at − 150 °C respectively.  相似文献   

17.
The effect of thermally reduced graphene oxide (TRGO) on the electrical percolation threshold of multi wall carbon nanotube (MWCNT)/epoxy cured composites is studied along with their combined rheological/electrical behavior in their suspension state. In contrast to MWCNT and carbon black (CB) based epoxy composites, there is no prominent percolation threshold for the bi-filler (TRGO–MWCNT/epoxy) composite. Furthermore, the electrical conductivity of the bi-filler composite is two orders of magnitude lower (∼1 × 10−5 S/m) than the pristine MWCNT/epoxy composites (∼1 × 10−3 S/m). This result is primarily due to the strong interaction between TRGO and MWCNTs. Optical micrographs of the suspension and scanning electron micrographs of the cured composites indicate trapping of MWCNTs onto TRGO sheets. A morphological model describing this interaction is presented.  相似文献   

18.
Rapidly increasing packaging density of electronic devices puts forward higher requirements for thermal conductivity of glass fibers reinforced polymer (GFRP) composites, which are commonly used as substrates in printed circuit board. Interface between fillers and polymer matrix has long been playing an important role in affecting thermal conductivity. In this paper, the effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled GFRP composites was evaluated. The results indicated that amino groups-Al2O3 was demonstrated to be effective filler to fabricate thermally conductive GFPR composite (1.07 W/m K), compared with epoxy group and graphene oxide functionalized Al2O3. It was determined that the strong adhesion at the interface and homogeneous dispersion of filler particles were the key factors. Moreover, the effect of interfacial state on dielectric and thermomechanical properties of GFRP composites was also discussed. This research provides an efficient way to develop high-performance GFRP composites with high thermal conductivity for integrated circuit packaging applications.  相似文献   

19.
Oil palm fiber reinforced high density polyethylene (HDPE) composites which can be used in several applications (mechanical part, fiber panel, etc.) were manufactured by twin-screw extrusion followed by compression molding. In particular, the effect of coupling agent (maleated polypropylene, MAPP) concentration (0, 2, 4 and 6 wt.%) was investigated for 30 and 40 wt.% oil palm fiber. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), dynamic mechanical thermal analysis (DMTA) and mechanical testing (tension and impact) were carried out to determine the effect of fiber and compatibilizer contents. The results showed that compatibilized composites have increased stiffness due to enhanced interfacial adhesion between the fibers and the matrix, as well as better homogeneity (better fiber dispersion) due to chemical bonding. The optimum MAPP content was found to be 4% for the range of conditions tested.  相似文献   

20.
This paper reports a new approach to enhance the through-thickness thermal conductivity of laminated carbon fabric reinforced composites by using nanoscale and microscale silver particles in combination to create heterogeneously structured continuous through-thickness thermal conducting paths. High conductivity of 6.62 W/(m K) with a 5.1 v% silver volume fraction can be achieved by incorporating these nanoscale and microscale silver particles in EWC-300X/Epon862 composite. Silver flakes were distributed within the inter-tow area, while nanoscale silver particles penetrated into the fiber tows. The combination of different sizes of silver fillers is able to effectively form continuous through-thickness conduction paths penetrating fiber tows and bridging the large inter-tow resin rich areas. Positive hybrid effects to thermal conductivity were found in IM7/EWC300X/sliver particle hybrid composites. In addition, microscale fillers in resin rich areas showed less impact on tensile performance than nanoscale particles applied directly on fiber surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号