首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a contribution to the prediction of the evolutionary behavior of biocomposites in service conditions, this study focused on the simulation of the hydrothermal aging of short natural fiber reinforced composites made by extrusion/injection molding. We endeavored to model the reversible modifications of the behavior of PLA and PLA/flax composites when immersed in water at different temperatures (20, 35 and 50 °C). A numerical model accounting for the heterogeneous mechanisms involved during aging such as water diffusion and the resulting swelling and plasticizing of polymers was implemented. Simulated data proved to be in perfect accordance with experimental results as long as no irreversible mechanism was occurring. The deviations of the simulated data from experimental results were limited at 35 °C but significant at 50 °C. Finally, the influence of moisture on the local elastic modulus of flax fibers was inferred thanks to the Halpin-Kardos homogenization model.  相似文献   

2.
Flax Acrodur biocomposites are elaborated with an innovative flax reinforcement consisting of long technical fibers unidirectionally arranged without any weft and twist. The fibers cohesion is performed by using a new process consisting by reactivating the pectin cement. A polyester thermoset matrix (Acrodur) is used to impregnate the flax reinforcement and to produce unidirectional (UD) laminates. The relationship between the main process variables (drying, fibers content, densification and curing parameters) and the properties of the biocomposites is investigated. The optimized biocomposites have an elastic modulus of 18 ± 1 GPa with 55% wt.% flax fiber content and a low density of 0.93 g/cm3. The thermal stability of the developed biocomposites is also investigated by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA). DMA results show a slight change of the storage modulus in a range of temperature from 23 °C to 160 °C. The appropriate processing parameters for the biocomposites are established. The developed flax tapes reinforced Acrodur biocomposites have a potential to be integrated for automotive applications thanks to their high stiffness/weight ratio and environmental advantages.  相似文献   

3.
Low viscosity thermoset bio-based resin was synthesised from lactic acid, allyl alcohol and pentaerythritol. The resin was impregnated into cellulosic fibre reinforcement from flax and basalt and then compression moulded at elevated temperature to produce thermoset composites. The mechanical properties of composites were characterised by flexural, tensile and Charpy impact testing whereas the thermal properties were analysed by dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results showed a decrease in mechanical properties with increase in fibre load after 40 wt.% for the neat flax composite due to insufficient fibre wetting and an increase in mechanical properties with increase fibre load up to 60 wt.% for the flax/basalt composite. The results of the ageing test showed that the mechanical properties of the composites deteriorate with ageing; however, the flax/basalt composite had better mechanical properties after ageing than the flax composite before ageing.  相似文献   

4.
In this article, a flax fiber yarn was grafted with nanometer sized TiO2, and the effects on the tensile and bonding properties of the single fibers and unidirectional fiber reinforced epoxy plates were studied. The flax fiber yarn was grafted with nanometer sized TiO2 through immersion in nano-TiO2/KH560 suspensions under sonification. The measured grafting content of the nano-TiO2 ranged from 0.89 wt.% to 7.14 wt.%, dependent on the suspension concentration. With the optimized nano-TiO2 grafting content (∼2.34 wt.%), the tensile strength of the flax fibers and the interfacial shear strength to an epoxy resin were enhanced by 23.1% and 40.5%, respectively. The formation of Si–O–Ti and C–O–Si bonds and the presence of the nano-TiO2 particles on the fiber surfaces contributed to the property enhancements. Unidirectional flax fiber reinforced epoxy composite (Vf = 35.4%) plates prepared manually showed significantly enhanced flexural properties with the grafting of nano-TiO2.  相似文献   

5.
Composites of polypropylene, substitutable for a given application and reinforced with: Medium Density Fibreboard fibre (MDF) (40 wt%); flax (30 wt%); and glass fibre (20 wt%), were evaluated after 6 injection moulding and extrusion reprocessing cycles. Of the range of tensile, flexural and impact properties examined, MDF composites showed the best mean property retention after reprocessing (87%) compared to flax (72%) and glass (59%). After 1 reprocessing cycle the glass composite had higher tensile strength (56.2 MPa) compared to the MDF composite (44.4) but after 6 cycles the MDF was stronger (35.0 compared to 29.6 MPa for the glass composite). Property reductions were attributed to reduced fibre length. MDF fibres showed the lowest reduction in fibre length between 1 and 6 cycles (39%), compared to glass (51%) and flax (62%). Flax fibres showed greater increases in damage (cell wall dislocations) with reprocessing than was shown by MDF fibres.  相似文献   

6.
Magnetically-sensitive polyurethane composites, which were crosslinked with multi-walled carbon nanotubes (MWCNTs) and were filled with Fe3O4 nanoparticles, were synthesized via in situ polymerization method. MWCNTs pretreated with nitric acid were used as crosslinking agents. Because of the crosslinking of MWCNTs with polyurethane prepolymer, the properties of the composites with a high content of Fe3O4 nanoparticles, especially the mechanical properties, were significantly improved. The composites showed excellent shape memory properties in both 45 °C hot water and an alternating magnetic field (f = 45 kHz, H = 29.7 kA m−1). The shape recovery time was less than one minute and the shape recovery rate was over 95% in the alternating magnetic field.  相似文献   

7.
This work studies the possibility of compounding natural fibres (flax) into engineering plastics (PA6 and PB6) and comparing the results with counterpart glass fibre composites. The problem in compounding is the difficulty to compound the fibres with such polymers of high melting temperatures without decomposing the natural fibre thermally. Preliminary experiments are tried to define the possible processing window using the kneader namely temperature, compounding time and shear rate. Fibre content is tried in range of 0–50 wt.% with 10% step. The mixing temperature covers the range around the melting temperature ‘Tm’ [Tm−20, Tm+20]°C. The use of pre-melting temperature in compounding would utilise the energy evolving by fibres mutual rubbing. Compounding time is optimised at the minimum level. Shearing rate is tried at 25, 50, 75 and 100 rpm. Optimum conditions are defined to be 210–230 °C and 200–210 °C for PBT and PA6 respectively. Shearing rate is also defined to lie within 25–50 rpm.Two different additives of non-organic mineral and organic phosphate flame retardants are tried with the prepared composites either alone or in combination with each other. The loading of flame retardants is limited to 20 wt.% in order to leave a space for natural fibres as well as the polymer and to keep in turn the overall composite mechanical properties. A mix of 1:1 ratio between the both types of retardants is needed to reach V0 flame retardation level. Mechanical properties are even improved 30% in E-modulus and 4% in strength with respect to composites without flame retardants. However, the injection moulding is reported to be difficult because of the high viscosity and the parameters should be optimised regarding the desired flame retardance level and the required mechanical properties as well as keeping the fibres not damaged.  相似文献   

8.
The microstructure of flax fibres can be considered as a laminate with layers reinforced by cellulose fibrils. During a single fibre tensile test the S2 layer is subjected to shear. At room temperature, natural fibres contain water absorbed in the cell-walls. This paper examines the influence of this water at two scales: on the tensile behaviour of the flax fibres and on unidirectional plies of flax reinforced epoxy. Drying (24 h at 105 °C) is shown to reduce both failure stress and failure strain significantly. Analysis of normal stresses at the accomodation threshold provides an estimation of the shear strength of secondary cell walls as 45 MPa for fibres containing 6.4% by weight of water and only 9 MPa for dried fibres. Results from tensile tests on unidirectional flax/epoxy composites, reinforced by as-received and dried fibres, confirm the influence of drying on strength properties.  相似文献   

9.
Natural biocomposites were prepared from flax fibers and mucilage polysaccharides extracted from flax seeds, as a matrix, in two steps: impregnation and compression molding. The ribbons were preimpregnated with water plasticized mucilage. Solid mucilage (30%, w/w) was added to the ribbon impregnated with 20% mucilage, and the composite was compression molded. The solidified mucilage was homogeneous and rigid (2 GPa) with an elastic deformation of approximately 1%. The mechanical properties of the composites were in the ranges of 7–10 GPa, 300–400 MPa and 4–5% for the modulus, maximal strength and strain, respectively. The two latter parameters were larger than the ones for the fiber. The experimental values of the modulus and strength were in accordance with the values computed using the rule of mixture, which indicated a good interface between the fibers and the matrix. This was confirmed visually with scanning electron microscopy. The water sorption behavior of the composites was intermediate between the mucilage and the fiber alone.  相似文献   

10.
Cellulose nanofibers–reinforced PVA biocomposites were prepared from peanut shell by chemical–mechanical treatments and impregnation method. The composite films were optically transparent and flexible, showed high mechanical and thermal properties. FE-SEM images showed that the isolated fibrous fragments had highly uniform diameters in the range of 15–50 nm and formed fine network structure, which is a guarantee of the transparency of biocomposites. Compared to that of pure PVA resin, the modulus and tensile strength of prepared nanocomposites increased from 0.6 GPa to 6.0 GPa and from 31 MPa to 125 MPa respectively with the fiber content as high as 80 wt%, while the light transmission of the composite only decreased 7% at a 600 nm wavelength. Furthermore, the composites exhibited excellent thermal properties with CTE as low as 19.1 ppm/K. These favorable properties indicated the high reinforcing efficiency of the cellulose nanofibers isolated from peanut shell in PVA composites.  相似文献   

11.
This papers aims to characterize the influence of moisture uptake on the mechanical behaviour of unidirectional flax fibre-reinforced epoxy laminates. Monotonic and cyclic tensile tests and free vibration characterization are carried out. Results show that UD flax-epoxy composites, when exposed to hygrothermal conditioning at 70 °C and 85% RH, exhibit a diffusion kinetic which follows a one dimensional Fickian behaviour. The mass uptake at equilibrium is approximately 3.3% and the diffusion coefficient 6.5 × 10−6 m2 s−1. Water vapour sorption is shown to induce a significant change in the shape of the tensile stress-strain curve, a decrease in the dynamic elastic modulus of about 20% and a 50% increase in the damping ratio. Contrary to all expectations, water saturation does not degrade the monotonic tensile strength of such a flax-epoxy composites and leads to an increase in the fatigue strength for a high number of cycles.  相似文献   

12.
The objective of this work was to investigate the use of hydrothermal pre-treatment and enzymatic retting to remove non-cellulosic compounds and thus improve the mechanical properties of hemp fibre/epoxy composites. Hydrothermal pre-treatment at 100 kPa and 121 °C combined with enzymatic retting produced fibres with the highest ultimate tensile strength (UTS) of 780 MPa. Compared to untreated fibres, this combined treatment exhibited a positive effect on the mechanical properties of hemp fibre/epoxy composites, resulting in high quality composites with low porosity factor (αpf) of 0.08. Traditional field retting produced composites with the poorest mechanical properties and the highest αpf of 0.16. Hydrothermal pretreatment at 100 kPa and subsequent enzymatic retting resulted in hemp fibre composites with the highest UTS of 325 MPa, and stiffness of 38 GPa with 50% fibre volume content, which was 31% and 41% higher, respectively, compared to field retted fibres.  相似文献   

13.
Three-dimensional braided carbon fiber-reinforced ZrC matrix composite, 3-D Cf/ZrC, were prepared by liquid metal infiltration process at 1200 °C using a Zr2Cu intermetallic compound as infiltrator. The microstructure and properties of the composites were investigated. The results indicated that ZrC with a yield of 35.2 ± 1.8 vol.% was certified as the major phase of the composites. The formation of ZrC was controlled by a solution-precipitation mechanism. The obtained composites exhibited good mechanical properties, with a flexural strength of 293.0 ± 12.1 MPa, a flexural modulus of 82.7 ± 6.4 GPa and a fracture toughness of 9.8 ± 0.9 MPa m1/2. The mass and linear ablation rates of the composites exposed to oxyacetylene torch were 0.0013 ± 0.0005 g s−1 and −0.0009 ± 0.0003 mm s−1, respectively. The formation of a dense ZrO2 protective layer and the evaporation of residual Cu contributed mainly to the excellent ablation resistance.  相似文献   

14.
Silica coated multiwalled carbon nanotubes (SiO2@MWCNTs) with different coating thicknesses of ∼4 nm, 30–50 nm, and 70–90 nm were synthesized by a sol–gel method and compounded with polyurethane (PU). The effects of SiO2@MWCNTs on the electrical properties and thermal conductivity of the resulting PU/SiO2@MWCNT composites were investigated. The SiO2 coating maintained the high electrical resistivity of pure PU. Meanwhile, incorporating 0.5, 0.75 and 1.0 wt% SiO2@MWCNT (70–90 nm) into PU, produced thermal conductivity values of 0.287, 0.289 and 0.310 W/mK, respectively, representing increases of 62.1%, 63.3% and 75.1%. The thermal conductivity of PU/SiO2@MWCNT composites was also increased by increasing the thickness of the SiO2 coating.  相似文献   

15.
The distiller’s dried grains with solubles (DDGS) were treated by smashing and water washing processes. The treatment effects on DDGS were analyzed, and the results showed that the thermal stability and the hydrophobicity of DDGS were improved by the treatment processes. The flame retarded biocomposites of poly(lactic acid) (PLA) with DDGS and degradable polymeric flame retardant resorcinol di(phenyl phosphate) (RDP) were prepared. The prepared biocomposites had good mechanical properties and the tensile strength of the biocomposite containing 15 wt% RDP and 15 wt% DDGS reached approximately 53 MPa. Meanwhile, using the limited oxygen index (LOI) and the underwriters laboratory (UL-94) tests, for the biocomposite, the LOI value was approximately 27.5% and V-0 rating in UL-94 was attained. Furthermore, the peak heat release rate of this biocomposite was reduced to 275 kW/m2 compared with 310 kW/m2 for pure PLA. After burning of the biocomposites, compact and coherent charred layer was formed and the char residues were analyzed in detail.  相似文献   

16.
Ti3SiC2 filler has been introduced into SiCf/SiC composites by precursor infiltration and pyrolysis (PIP) process to optimize the dielectric properties for electromagnetic interference (EMI) shielding applications in the temperatures of 25–600 °C at 8.2–12.4 GHz. Results indicate that the flexural strength of SiCf/SiC composites is improved from 217 MPa to 295 MPa after incorporating the filler. Both the complex permittivity and tan δ of the composites show obvious temperature-dependent behavior and increase with the increasing temperatures. The absorption, reflection and total shielding effectiveness of the composites with Ti3SiC2 filler are enhanced from 13 dB, 7 dB and 20 dB to 24 dB, 21 dB and 45 dB respectively with the temperatures increase from 25 °C to 600 °C. The mechanisms for the corresponding enhancements are also proposed. The superior absorption shielding effectiveness is the dominant EMI shielding mechanism. The optimized EMI shielding properties suggest their potentials for the future shielding applications at temperatures from 25 °C to 600 °C.  相似文献   

17.
The effect of CuO nanostructure morphology on the mechanical properties of CuO/woven carbon fiber (WCF)/vinyl ester composites was investigated. The growth of CuO nanostructures embedded in the surface of woven carbon fibers (WCFs) was carried out by a two-step seed-mediated hydrothermal method; i.e., seeding and growth treatments with controlled chemical precursors. CuO nanostructural morphologies ranging from petal-like to cuboid-like nanorods (NRs) were obtained by controlling the thermal growth temperature in the hydrothermal process over a growth time of 12 h. The Cu2+/O ratio and the rate of reaction greatly influenced the formation of CuO nanostructures as self-assembled shapes on the crystal planes in the order L[0 1 0] > L[1 0 0] > L[0 0 1]. Morphological variations were analyzed by scanning electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller surface area analysis. The impact behavior, in-plane shear strength, and tensile properties of the CuO/WCF/vinyl ester composites were analyzed for different CuO NR morphologies at various growth temperatures and molar concentrations. The CuO/WCF/vinyl ester composites had improved impact energy absorption and mechanical properties because the higher specific surface area of CuO NRs grown as secondary reinforced nanomaterials on WCFs enhanced load transfer and load-bearing capacity.  相似文献   

18.
Mechanical performance of three oxide/oxide ceramic matrix composites (CMCs) based on Nextel 610 fibers and SiOC, alumina, and mullite/SiOC matrices respectively, is evaluated herein. Tensile strength and stiffness of all materials decreased at 1000 °C and 1200 °C, probably because of degradation of fiber properties beyond 1000 °C. Microstructural changes in the composites during exposure at 1000 °C and 1200 °C for 50 h reduce their flexural strength, fracture toughness and work of fracture. A literature review regarding mechanical properties of several oxide/oxide CMCs revealed lower influence of fiber properties on composite strength compared with elastic modulus. The tested composites exhibit comparable stiffness and strength but higher fracture toughness compared with average values determined from a literature review. Considering CMCs with different compositions, we observed an interesting linear trend between strength and fracture toughness. The validity of the linear relationship between fracture strength and flexural toughness for CMCs is discussed.  相似文献   

19.
Injection molded biocomposites from a new biodegradable polymer blend based matrix system and miscanthus natural fibers were successfully fabricated and characterized. The blend matrix, a 40:60 wt% blend of poly(butylene adipate-co-terephthalate), PBAT and poly(butylene succinate), PBS was chosen based on their required engineering properties for the targeted biocomposite uses. A big scientific challenge of biocomposites is in improving impact strength within the desired tensile and flexural properties. The stiffness–toughness balance is one of the biggest scientific hurdles in natural fiber composites. Thus, the key aspect of the present study was in investigating an in-depth statistical approach on influence of melt processing parameters on the impact strength of the biocomposite. A full factorial experimental design was used to predict the statistically significant variables on the impact strength of the PBS/PBAT/miscanthus biocomposites. Among the selected processing parameters, fiber length has a most significant effect on the impact strength of the biocomposites.  相似文献   

20.
The hybrids of multi-walled carbon nanotube and poly(lactic acid) (MWCNT/PLA) were prepared by a melt-blending method. In order to enhance the compatibility between the PLA and MWCNTs, the surface of the MWCNTs was covalently modified by Jeffamine® polyetheramines by functionalizing MWCNTs with carboxylic groups. Different molecular weights and hydrophilicity of the polyethermaines were grafted onto MWCNTs with the assistance of a dehydrating agent. The results showed that low-molecular-weight Jeffamine® polyetheramine modified MWCNTs can effectively improve the thermal properties of PLA composites. On the other hand, high-molecular-weight and poly(oxyethylene)-segmented polyetheramine could render the modified MWCNTs of well dispersion in PLA, and consequently affecting the improvements of mechanical properties and conductivity of composite materials. With the addition of 3.0 wt% MWCNTs, the increment of E′ of the composite at 40 °C was 79%. For conductivity, the surface resistivity decreased from 1.27 × 1012 Ω/sq for neat PLA to 8.30 × 10−3 Ω/sq for the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号