首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between high temperature proton exchange membrane fuel cell (HT-PEMFC) operation temperature and cell durability was investigated in terms of the deterioration mechanism. Long-term durability tests were conducted at operational temperatures of 150, 170, and 190 °C for a HT-PEMFC with phosphoric acid-doped polybenzimidazole electrolyte membranes. Higher cell temperatures were found to result in a higher cell voltage, but decrease cell life. The reduction in cell voltage of approximately 20 mV during the long-term tests was considered to be caused both by aggregation of the electrode catalyst particles in the early stage of power generation, in addition to the effects of crossover due to the depletion of phosphoric acid in the terminal stage, which occurs regardless of cell temperature. It is expected that enhanced long-term durability for practical applications can be achieved through effective management of phosphoric acid transfer.  相似文献   

2.
In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were investigated. Polysulfone (PS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. It was shown that the degree of sulfonation is increased with the molar ratio of the sulfonating agent to PS repeat unit. The degree of sulfonation was determined by elemental analysis and 1H NMR was performed to verify the sulfonation reaction on the PS. Sulfonation levels from 15 to 40% were easily achieved by varying the content of the sulfonating agent. Composite membranes were prepared by blending TiO2 with sPS solution in DMAC (5 wt.%) by the solution casting procedure. The membranes have been characterized by thermal analysis, water uptake, proton conductivity measurements and single cell performance. The addition of TiO2 increased the thermal stability but high filler concentrations decreased the miscibility of the composite component, and resulted in brittle membranes. The conductivity values in the range of 10−3–10−2 S/cm were obtained for composite membranes. The conductivities of the membranes show similar increasing trend as a function of operating temperature. The membranes were tested in a single cell operating at 60–85 °C in humidified H2/O2. Single fuel cell tests performed at different operating temperatures indicated that sPS/TiO2 composite membrane is more hydrodynamically stable and also performed better than sPS membranes. The highest performance of 300 mA/cm2 was obtained for sPS/TiO2 membrane at 0.6 V for an H2–O2/PEMFC working at 1 atm and 85 °C. The results show that sPS/TiO2 is a promising membrane material for possible use in proton exchange membrane fuel cells.  相似文献   

3.
4.
We experimentally studied a high temperature proton exchange membrane (PEM) fuel cell to investigate the effects of CO poisoning at different temperatures. The effects of temperature, for various percentages of CO mixed with anode hydrogen stream, on the current-voltage characteristics of the fuel cell are investigated. The results show that at low temperature, the fuel cell performance degraded significantly with higher CO percentage (i.e., 5% CO) in the anode hydrogen stream compared to the high temperature. A detailed electrochemical analysis regarding CO coverage on electrode surface is presented which indicates that electrochemical oxidation is favorable at high temperature. A cell diagnostic test shows that both 2% CO and 5% CO can be tolerated equally at low current density (<0.3 A cm−2) with high cell voltage (>0.5 V) at 180 °C without any cell performance loss. At high temperature, both 2% CO and 5% CO can be tolerated at higher current density (>0.5 A cm−2) with moderate cell voltage (0.2-0.5 V) when the cell voltage loss within 0.03-0.05 V would be acceptable. The surface coverage of platinum catalyst by CO at low temperature is very high compared to high temperature. Results suggest that the PEM fuel cell operating at 180 °C or above, the reformate gas with higher CO percentage (i.e., 2-5%) can be fed to the cell directly from the fuel processor.  相似文献   

5.
Gas diffusion electrodes (GDEs) prepared with various polymer binders in their catalyst layers (CLs) were investigated to optimize the performance of phosphoric acid doped polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cells (HT-PEMFCs). The properties of these binders in the CLs were evaluated by structure characterization, electrochemical analysis, single cell polarization and durability test. The results showed that polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) are more attractive as CL binders than conventional PBI or Nafion binder. At ambient pressure and 160 °C, the maximum power density can reach ∼ 0.61 W cm−2 (PTFE GDE), and the current density at 0.6 V is up to ca. 0.52 A cm−2 (PVDF GDE), with H2/air and a platinum loading of 0.5 mg cm−2 on these electrodes. Also, both GDEs showed good stability for fuel cell operation in a short term durability test.  相似文献   

6.
Two trifunctional bromomethyls containing crosslinkers, 1,3,5-tris(bromomethyl)benzene (B3Br) and 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene (Be3Br), are employed to covalently crosslink polybenzimidazole (PBI) membranes for the high temperature proton exchange membrane fuel cell. The presence of three bromomethyl groups in each crosslinker molecule is expected to create more free volume for acid doping while enhancing the adhesive strength of the PBI chains. In addition, the influence of the two crosslinker structures on the property of the crosslinked membranes is compared and analyzed. All the crosslinked PBI membranes exhibit longer morphology durability over the pristine PBI membrane toward the radical oxidation. Moreover, the crosslinked PBI membranes with the crosslinker Be3Br containing three ethyl groups display superior acid doping level, high conductivity and excellent mechanical strength simultaneously, over those with the crosslinker B3Br and the pristine PBI membrane. Single cell measurements based on the acid doped membrane with a crosslinking degree of 7.5% by Be3Br demonstrate the technical feasibility of the prepared membranes for high temperature proton exchange membrane fuel cells.  相似文献   

7.
Graphite oxide/polybenzimidazole synthesized by 3, 3′-diaminobenzidine and 5-tert-butyl isophthalic acid (GO/BuIPBI) and isocyanate modified graphite oxide/BuIPBI (iGO/BuIPBI) composite membranes were prepared for high temperature polymer proton exchange membrane fuel cells (PEMFCs). All membranes were loaded with different content of phosphoric acid to provide proton conductivity. The GO/BuIPBI and iGO/BuIPBI membranes were characterized by SEM which showed that the filler GO or iGO were well dispersed in the polymer matrix and had a strong interaction with BuIPBI, which can improve the chemical stability of BuIPBI membrane and support a higher acid content. The proton conductivities of the GO/BuIPBI and iGO/BuIPBI with high acid loading were 0.016 and 0.027 S/cm, respectively, at 140 °C and without humidity.  相似文献   

8.
High temperature proton exchange membrane fuel cells (HT-PEMFCs) are proficient clean energy conversion devices for automotive and stationary applications. HT-PEMFC could mitigate the CO poisoning, humidity and heat management, and sluggish of oxygen reduction reaction (ORR). Acid doped polybenzimidazoles (PBIs)/functionalized PBIs polymer electrolyte membranes are familiar uses for HT-PEMFC because of high proton conductivity with thermo-mechanical stability. Proton conductivity of PBI membranes is greatly promising by acid doping dimension and cell operating temperature. PBI reactive sites (=NH) and acidic anions prominently contribute the proton transfer through the prolonged hydrogen bonding network. Coating and sprayed methods are prominent techniques for fabrication of gas diffusion electrodes (GDEs), although shrinkage and hairline surface cracks observed on GDEs. Multi walled carbon nanotubes (MWCNTs) has been compromising unique characteristics for steady carbon support materials. Moreover, PTFE and PVDF can be used as catalyst binder to reduce corrosion rate. In this review, it has been focused the PBIs membrane, acid doping, GDEs, MEA and durability of MEA.  相似文献   

9.
Nafion/TiO2 composite membranes were studied for the application in proton exchange membrane fuel cell (PEMFC) to be used with the humidified or dry reactant gases of H2 and O2. Composite membranes were prepared by carrying out in-situ sol–gel reaction of Ti (OC4H9)4 in Nafion perfluorosulfonic acid films, such as Nafion112, 1135 and 115. The influence of the concentration of Ti (OC4H9)4 isopropyl alcohol solution on the Ti content in the membranes of different thicknesses was investigated. The X-ray diffraction (XRD) analysis demonstrated that TiO2 in the composite membranes had a structure of anatase with an average particle size of 4.0 nm. The energy dispersive spectra (EDS) analysis indicated a symmetrical distribution of the TiO2 particles in the modified membranes. The water retention ability and electrochemical performance of Nafion/TiO2 composite membranes were evaluated using a single PEMFC operated with humidified or dry gas reactants during a long period.  相似文献   

10.
The effect of chloride as an air impurity and as a catalyst contaminant on the performance and durability of polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cell (HT-PEMFC) was studied. The ion chromatographic analysis reveals the existence of chloride contaminations in the Pt/C catalysts. Linear sweep voltammetry was employed to study the redox behavior of platinum in 85% phosphoric acid containing chloride ions, showing increase in oxidation and decrease in reduction current densities during the potential scans at room temperature. The potential scans at high temperatures in 85% phosphoric acid containing chloride ions showed both increase in oxidation and reduction current densities. The fuel cell performance, i.e. the current density at a constant voltage of 0.4 V and 0.5 V was found to be degraded as soon as HCl was introduced in the air humidifier. The performance loss was recovered when switching from the HCl solution back to pure water in the air humidifier. Under an accelerated aging performance test conducted through potential cycling between 0.9 V and 1.2 V, the PBI-based fuel cell initially containing 0.5 NaCl mg cm−2 on the cathode catalyst layer exhibited a drastic degradation in the performance as compared to the chloride free MEAs. The mechanisms of the chloride effect on the fuel cell performance and durability were further discussed.  相似文献   

11.
In this study, functionalized titania nanotubes (F-TiO2-NT) were synthesized by using 3-mercaptopropyl-tri-methoxysilane (MPTMS) as a sulfonic acid functionalization agent. These F-TiO2-NT were investigated for potential application in high temperature hydrogen polymer electrolyte membrane fuel cells (PEMFCs), specifically as an additive to the proton exchange membrane. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) results confirmed that the sulfonic acid groups were successfully grafted onto the titania nanotubes (TiO2-NT). F-TiO2-NT showed a much higher conductivity than non-functionalized titania nanotubes. At 80 °C, the conductivity of F-TiO2-NT was 0.08 S/cm, superior to that of 0.0011 S/cm for the non-functionalized TiO2-NT. The F-TiO2-NT/Nafion composite membrane shows good proton conductivity at high temperature and low humidity, where at 120 °C and 30% relative humidity, the proton conductivity of the composite membrane is 0.067 S/cm, a great improvement over 0.012 S/cm for a recast Nafion membrane. Based on the results of this study, F-TiO2-NT has great potential for membrane applications in high temperature PEMFCs.  相似文献   

12.
Electrochemical carbon corrosion occurring in a high temperature proton exchange membrane fuel cell (HT-PEMFC) operating under non-humidification conditions was investigated by measuring CO2 generation using on-line mass spectrometry and comparing the results with a low-temperature proton exchange membrane fuel cell (LT-PEMFC) operated under fully humidified conditions. The experimental results showed that more CO2 was measured for the HT-PEMFC, indicating that more electrochemical carbon corrosion occurs in HT-PEMFCs. This observation is attributed to the enhanced kinetics of electrochemical carbon corrosion due to the elevated operating temperature in HT-PEMFCs. Additionally, electrochemical carbon corrosion in HT-PEMFCs showed a strong dependence on water content. Therefore, it is critical to remove the water content in the supply gases to reduce electrochemical carbon corrosion.  相似文献   

13.
On the study of high temperature proton exchange membrane (HTPEM), the trade-off between proton conductivity and physico-chemical property (such as mechanical strength, dimensional stability and methanol resistance) remained a main obstacle for comprehensive performance enhancement. To address this issue, novel HTPEM was prepared by doping phosphotungstic acid intercalated ferric sulfophenyl phosphate (FeSPP-PWA) into polybenzimidazole (PBI) via hot pressed method. Intense hydrogen bonding network was built between PBI and FeSPP-PWA, rendering construction of proton channels and reinforcement of physico-chemical property. As a novel proton conductor, FeSPP-PWA facilitated formation of efficient proton transfer pathway. The layered morphology and inorganic intrinsity of FeSPP-PWA also improved the mechanical and dimensional stability while reducing the methanol permeability of the PBI/FeSPP-PWA membranes. The composite membrane exhibited good thermal stability up to 200 °C. The proton conductivity of PBI/FeSPP-PWA (30 wt%) reached 110 mS cm?1 at 170 °C and 100% RH, and was 69.3 mS cm?1 at 180 °C and 50% RH. The PBI/FeSPP-PWA also showed low methanol permeability and high membrane selectivity for application in direct methanol fuel cells.  相似文献   

14.
Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 °C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs.  相似文献   

15.
Composite membranes used for proton exchange membrane fuel cells comprising of polybenzimidazole (PBI) and carbon nanotubes with certain functional groups were studied, because they could enhance both the mechanical property and fuel cell performance at the same time. In this study, sodium poly(4-styrene sulfonate) functionalized multiwalled carbon nanotubes (MWNT-poly(NaSS))/PBI and imidazole functionalized multiwalled carbon nanotubes (MWNT-imidazole)/PBI composite membranes were prepared. The functionalization of carbon nanotubes involving non-covalent modification and covalent modification were confirmed by FITR, XPS, Raman spectroscopy, and TGA. Compared to unmodified MWNTs and MWNT-poly(NaSS), MWNT-imidazole provided more significant mechanical reinforcement due to its better compatibility with PBI. For MWNT-poly(NaSS)/PBI and MWNT-imidazole/PBI composite membranes at their saturated doping levels, the proton conductivities were up to 5.1 × 10−2 and 4.3 × 10−2 S/cm at 160 °C under anhydrous condition respectively, which were slightly higher than pristine PBI (2.8 × 10−2 S/cm). Also, MWNT-poly(NaSS)/PBI and MWNT-imidazole/PBI composite membranes showed relatively improved fuel cell performance at 170 °C compared to pristine PBI.  相似文献   

16.
A rapid method to synthesize poly[2,2′-(p-oxydiphenylene)-5,5′-benzimidazole] (OPBI) through a solution polycondensation under microwave irradiation is explored. Synthesis parameters affecting the molecular weight (Mw) of OPBI, including the mass ratio of solvent to P2O5, the monomer concentration, and reaction time, are optimized. The main characteristics of OPBI are studied, and the corresponding membrane is prepared through a solvent casting process. A series of sulfuric acid doped OPBI (H2SO4/OPBI) hybrid membranes with different acid doping levels (ADLs) are developed. The effects of H2SO4 on microstructure, ADL and electrochemical properties of these membranes are explored. Herein, the hybrid membrane shows high proton conductivity (190 mS cm−1) at elevated temperature (160 °C) and anhydrous conditions, high ADL (18.73 mol of H2SO4 for OPBI per repeat unit, i.e., ADL = 18.73 mol PRU−1) and excellent dimensional stability (40.3%). All these properties demonstrated that H2SO4/OPBI hybrid membrane can be used as an alternative membrane for high temperature proton exchange membrane fuel cells (HT-PEMFCs).  相似文献   

17.
The polarization curve is the most common characterization used to describe the steady-state of a fuel cell. The methods proposed in the literature to realize polarization curves for High Temperature Proton Exchange Membrane Fuel Cells (HT-PEMFC) are mainly focused on ensuring stable operating conditions. However, if degradations are caused during its realization, the interpretation of the experimental results may be biased. In order to understand and highlight these different phenomena, an experimental campaign is carried out on Advent PBI (formerly BASF Celtec®-P 1100W) membrane-electrode assemblies (MEA). Four different methodologies for the realization of polarization curves including impedance spectroscopies are proposed. Each one is cycled 30 times in order to compare their impact on fuel cell degradation. The use of a CO2 sensor confirms that carbon corrosion is the main degradation caused by the passage to high voltage. Moreover, the analysis shows that this degradation can be intensified according to the conditions preceding the switch to these voltages. However, the realization of a current truncated polarization curve in order to avoid this degradation can be at the origin of the generation of reversible losses which can distort the interpretation of the results. The atmospheric pressure variation also generates a bias as the polarization curves are not necessarily realized at the same value because the gas outlet pressures are not regulated. A methodology of voltage readjustment according to the operating conditions is thus applied in order to compensate for this effect. Finally, the cycling of one of the polarization curve realization methods shows an interest for improvingthe break-in period.  相似文献   

18.
This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI (polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 μm thick layer of TFTCs on 75 μm thick Kapton foil. The Kapton foil was treated with in situ argon plasma etching to improve the adhesion between TFTCs and the Kapton substrate. The TFTCs were covered with a 7 μm liquid Kapton layer using spin coating technique to protect them from environmental degradation. This Kapton foil with deposited TFTCs was used as sealing inside a PBI (polybenzimidazole)-based single cell test rig, which enabled measurements of in situ temperature variations of the working fuel cell MEA. The performance of the TFTCs was promising with minimal interference to the operation of the fuel cell.  相似文献   

19.
This paper explores the effect and siting (location) of Nafion on Pt/C as exists in a PEM fuel cell catalyst layer. The addition of 30 wt% Nafion on Pt/C (Nfn-Pt/C) resulted in a severe loss of BET surface area by filling/blocking the smaller pore structures in the carbon support. Surprisingly, the presence of this much Nafion appeared to have only a minimal effect on the adsorption capability of either hydrogen or CO on Pt. However, the presence of Nafion doubled the amount of time required to purge most of the gas-phase and weakly-adsorbed hydrogen molecules away from the catalyst during hydrogen surface concentration measurements. This strongly chemisorbed surface hydrogen was determined by a H2/D2 switch and exchange procedure. Nafion had an even more pronounced effect on the reaction of a larger molecule like cyclopropane. Results from the modeling of cyclopropane hydrogenolysis in an idealized pores suggest that partial blockage of only the pore openings by the Nafion for the meso-macropores is sufficient to induce diffusion limitations on the reaction. The facts suggest that most of the Pt particles are in the meso-macropores of the C support, whereas Nafion is present primarily on the external surface of the C where it blocks significantly the micropores but only partially the meso-macropores.  相似文献   

20.
This paper is to experimentally and numerically investigate the cell performance and the localized characteristics associated with a high-temperature proton exchange membrane fuel cell (PEMFC). Three experiments are carried out in order to study the performance of the PEMFC with different operating conditions and to validate the numerical simulation model. The model proposed herein is a three-dimensional (3-D) computational fluid dynamics (CFD) non-isothermal model that essentially consists of thermal–hydraulic equations and electrochemical model. The performance curves of the PEMFC predicted by the present model agree with the experimental measured data. In addition, both the experiments and the predictions precisely demonstrate the enhanced effects of inlet gas temperature and system pressure on the PEMFC performance. Based on the simulation results, the localized characteristics within a PEMFC can be reasonably captured. These parameters include the fuel gas distribution, liquid water saturation distribution, membrane conductivity distribution, temperature variation, and current density distribution etc. As the PEMFC is operated at the higher current density, the fuel gas would be insufficiently supplied to the catalyst layer, consequently causing the decline in the generation of power density. This phenomenon is so called mass transfer limitation, which can be precisely simulated by the present CFD model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号