首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper presents a theoretical performance analysis of downlink orthogonal frequency-division multiplexing (OFDM) cellular radio communication systems. An accurate interference model that takes into account the cochannel and interchannel interference caused by both frequency and timing synchronization errors in adjacent and cochannel cells is developed. The effect of frequency-selective fading on the interfering signals has also accurately been taken into consideration. Based on this model, accurate expressions are given for average bit error rates (BERs) of OFDM-based $M$-ary quadrature amplitude modulation (QAM). These are extended to include multichannel reception with maximal ratio combining diversity.   相似文献   

2.
This paper provides a framework for the analysis of error rate performance of maximal ratio combining multichannel reception of coherent linearly modulated systems over frequency-selective fading channels. Expressions for the error probability are developed, and the special cases for which closed-form or acceptable efficient numerical solutions are possible are delineated. A new efficient and accurate recursive method for the Ricean fading main resolved path case is presented for coherent quadrature amplitude modulation constellations. The effect of automatic gain control error on analysis of modulation schemes is demonstrated. Finally, numerical examples based on the maritime high-data-rate channel model are provided to demonstrate the usefulness of the framework.  相似文献   

3.
Pilot-symbol-aided (PSA) transmission is one of the effective methods to combat multipath-fading in digital mobile communications systems. In the PSA systems, redundant bandwidth and power are required to transmit the pilot symbols. We propose a novel fading estimation technique that requires a very low bandwidth redundancy in the PSA systems. The proposed technique uses simple linear interpolation on the pilot symbols and the detected data symbols to obtain the estimates of the channel fading effects. Monte Carlo computer simulation has been carried out to study the effects of the technique on the bit error rate performance of 16-ary quadrature amplitude modulation in the flat and the frequency-selective Rayleigh-fading channels corrupted with cochannel interference and additive white Gaussian noise. Results have shown that the proposed technique can, at the expense of a little power efficiency, significantly improve the bandwidth efficiency of the PSA systems using receivers with low complexity and latency  相似文献   

4.
A spectrally efficient quadrature amplitude modulation (QAM) scheme with a simple nonlinearly switched filter is shown to provide a signaling waveform that is free from both intersymbol interference and zero-crossing timing jitter in a flat-fading channel. This modulation with coherent detection is evaluated by a computer simulation in a frequency-selective fading channel. Timing offset between in-phase and quadrature rails is varied. The effects of receiver filter bandwidths are also studied. It is found that this modulation is resistant to delay spread with moderate spectral efficiency and low complexity in a portable radio system, as compared to other spectrally efficient modulations  相似文献   

5.
This paper proposes a complexity-reduced decision feedback equalizer (DFE) for 16-ary quadrature amplitude modulation (16QAM) using tap gain interpolation, bi-directional equalizing (BDE) and space diversity combining (SDC) to achieve high spectral efficiency and high quality data transmission over frequency-selective fading channels in land mobile communications. To reduce the amount of computation required for BDE and SDC, we propose a tap gain interpolation scheme and pre-decision schemes for both processes. Computer simulation of a (16QAM/TDMA system) confirms that the proposed scheme improves frequency-selective fading compensation performance by 6 dB or more while using only 27% of the computation of conventional single branch DFE receivers  相似文献   

6.
Several standards such as IEEE 802.11a/g, IEEE 802.16, and the European Computer Manufacturers Association (ECMA) multiband orthogonal frequency division multiplexing (MB-OFDM) for high data-rate ultra-wideband employ bit-interleaved convolutionally coded multicarrier modulation over quasi-static fading channels. Motivated by the lack of appropriate error rate analysis techniques for this popular type of system and channel model, we present two novel analytical methods for bit error rate (BER) estimation of coded multicarrier systems operating over frequency-selective quasi-static channels with nonideal interleaving. In the first method, the approximate performance of the system is calculated for each realization of the channel, which is suitable for obtaining the outage BER performance (a common performance measure for, e.g., MB-OFDM systems). The second method assumes Rayleigh distributed frequency-domain subcarrier channel gains and knowledge of their correlation matrix, and can be used to directly obtain the average BER performance. Both methods are applicable to convolutionally coded interleaved multicarrier systems employing quadrature amplitude modulation, and are also able to account for narrowband interference (modeled as a sum of tone interferers). To illustrate the application of the proposed analysis, both methods are used to study the performance of a tone-interference-impaired MB-OFDM system.  相似文献   

7.
The probability of bit error is evaluated for a communication system using frequency hopping for jamming rejection and quadrature partial-response signaling for baseband modulation. The environment in which the system is operating is modeled as severe partial-band tone jamming under frequency-selective fading affecting both the signal and the jammer. Error-correction coding is used to improve the performance of the system  相似文献   

8.
This paper introduces a blind (i.e., data independent) algorithm for carrier frequency offset recovery in an orthogonal frequency-division multiplexing (OFDM) receiver operating over frequency-selective fading channels. The main idea behind this algorithm is to exploit the time-frequency-domain exchange inherent to the modulation scheme. Due to this feature, a carrier frequency offset has a similar impact on OFDM as a clock timing offset has in a quadrature amplitude modulation (QAM) system. The scheme we propose is a variant of Oerder-Meyr's (1988) feedforward clock recovery. Its performance is assessed by simulation, and the results are compared to those obtained from Van de Beek-Sandell-Borjesson's (1997) frequency synchronizer, which bears comparable complexity. The new scheme is shown to outperform the latter over frequency-selective fading channels, notably at medium to high signal-to-noise ratios. We also evaluated the efficiency of two different (time domain and frequency domain) offset correction strategies embedded in a particular OFDM receiver.  相似文献   

9.
Presents the measured/simulated performance of a time division multiplexing/time division multiple access (TDM/TDMA) portable radio link for noise, interference and delay spread impairments. The radio link transmits short TDMA bursts of 82 symbols at 450 kbits/sec using 4QAM. This modulation is also referred to 4PSK, but phase shift modulation is constant envelope. Nyquist filtering of quadrature signal components yields quadrature amplitude modulation which, of course, also contains π/2 phase variations at the sampling instants. Demodulation is performed by a low-overhead digital coherent demodulator with 2-branch selection diversity. The port or base has two receivers for diversity but the portable or handset uses only a single receiver to perform selection diversity. Signal-to-noise ratio and signal-to-interference ratio performance of the link was measured for a stationary channel and for a channel with different fading rates. In a Rayleigh fading environment, increasing the fading rate causes only a small performance degradation. The results also show that selection diversity is effective against interference in a slow Rayleigh fading environment. A separate set of experiments were performed to measure the effects of delay-spread on the link. Selection diversity is effective in reducing the word-error ratio floor caused by frequency-selective fading. As a result, relatively high data rates can be supported by a multipath fading channel without using adaptive equalization. Thus, a portable radio communications system using low complexity hardware design incorporating selection diversity can achieve good performance  相似文献   

10.
A low cost frequency-selective RF channel simulator architecture is explored in this paper. The technique of quadrature amplitude modulation (QAM) by independent low-pass filtered white Gaussian noise sources forms a rational function approximation (RFA) to the desired Doppler spectrum for flat Rayleigh fading. To simulate frequency-selective fading, this QAM/RFA architecture may be extended by combining delayed outputs from multiple flat fading generators. In this paper, the noise shaping filter considered is in the form of an infinite-impulse-response digital filter followed by an interpolator (upsampler) using linear interpolation. The performance requirements are those in the standard channel simulator section of TIA IS-55-A. The system is implemented almost entirely in the digital domain by use of IF sampling, with the signal processing performed in a high-end floating-point digital signal processor and a field-programmable gate array. The theoretical performance of the simulator is studied with respect to the TIA standard, and limitations of the hardware prototype are identified. A system capable of simulating 12 delay taps, with a processing bandwidth of 5 MHz, can be built at about one-tenth the cost of commercially available channel simulators of comparable performance  相似文献   

11.
Spread-spectrum modulation can provide protection from the selective fading that is typically encountered in mobile radio networks. Because the methods of combating frequency-selective fading are quite different for slow-frequency-hop (SFH) and direct-sequence (DS) spread spectrum systems, these two types of modulation perform very differently. The purpose of this paper is to compare the performance of SFH and DS systems under identical conditions for several models of the wide-band fading channel. Each system has the same bandwidth, transmits over the same frequency-selective Gaussian wide-sense-stationary uncorrelated-scattering channel, and uses error-correction coding to combat thermal noise and fading. The probability of bit error at the output of the decoder is determined for each system by a combination of analysis and simulation. Results are presented for systems with a single transmitter-receiver pair and for networks with multiple simultaneous transmissions (i.e., multiple-access communications). The multiple-access network is distributed, so that control of power by a central terminal, such as a base station, is not possible. The results illustrate the tradeoffs in performance between SFW and DS spread-spectrum systems as a function of the parameters of the signals and the channel model. The performance of the SFH system is shown to be less sensitive to the exact characterization of the channel delay spectrum than the DS system. For most of the channels considered in this paper, SFH spread spectrum gives better performance than DS spread spectrum  相似文献   

12.
In this paper, we discuss the transmission performance of Multi-Carrier Modulation (MCM) in frequencyselective fast Rayleigh fading channels. First, we optimize the transmission parameters of MCM withM-ary differential phase shift keying/differential detection (DPSK):the guard duration andthe number of sub-carriers for frequency-selective fast Rayleigh fading channels, and then show the bit error rate (BER) performance of the optimizedM-ary DPSK MCM. Next, we propose an MCM with pilot-assistedM-ary quadrature amplitude modulation/coherent detection (QAM), and discuss the BER performance when we reduce the number of pilot signals from the view-point of frequency-time utilization efficiency. Finally, we propose a two-stage frequency offset compensation method.  相似文献   

13.
This work presents an adaptive frequency-domain channel estimator (FD-CE) for equalization of space-time block code multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems in time-varying frequency-selective fading. The proposed adaptive FD-CE ensures the channel estimation accuracy in each set of four MIMO-OFDM symbols. Performance evaluation shows that the proposed method achieved a 10% packet error rate of 64 quadrature amplitude modulation (QAM) at 29.5 dB SNR under 120 km/h (Doppler shift is 266 Hz) in 4 times 4 MIMO-OFDM systems. To decrease complexity, the rich feature of Alamouti-like matrix is exploited to derive an efficient very large-scale integration (VLSI) solution. Finally, this adaptive FD-CE using an in-house 0.13-mu m CMOS library occupies an area of 3 times 3.1 mm2, and the 4 times 4 MIMO-OFDM modem consumes about 62.8 mW at 1.2 V supply voltage.  相似文献   

14.
It is expected that the available spectrum for the proposed personal communication networks will soon be at a premium as the user population increases, and using multilevel quadrature amplitude modulation (MQAM), an bandwidth efficient transmission method for digital signals, may significantly ease the problem. A new lattice polynomial perceptron (LPP), with faster and less input signal-dependent convergence behavior, is presented and applied to frequency-selective slow fading channel equalization and adjacent-channel interference (ACI) suppression in a 16-QAM system. Computer simulation results are given, which shows that, in a 16-QAM system, the performance of LPP is clearly superior to that of the other structures  相似文献   

15.
An Exact Error Probability Analysis of OFDM Systems with Frequency Offset   总被引:2,自引:0,他引:2  
In this paper, we derive exact closed form bit error rate (BER) or symbol error rate (SER) expressions for orthogonal frequency division multiplexing (OFDM) systems with carrier frequency offset (CFO). We consider the performance of an OFDM system subject to CFO error in additive white Gaussian noise (AWGN), frequency flat and frequency selective Rayleigh fading channels. The BER/ SER performances of BPSK and QPSK modulation schemes are analyzed for AWGN and frequency-flat Rayleigh fading channels while BPSK is considered for frequency-selective Rayleigh fading channels. Our results can easily be reduced to the respective analytical error rate expressions for the OFDM systems without CFO error. Furthermore, the simulation results are provided to verify the accuracy of the new error rate expressions.  相似文献   

16.
An iterative pilot-symbol aided modulation (PSAM) channel estimation approach is proposed for vertical Bell Laboratories layered space-time (V-BLAST) orthogonal frequency division multiplexing systems operating on frequency-selective fading channels. Since the signals at the receive antennas are the superposition of signals from multiple transmit antennas, accurate channel estimates are crucial for good error performance. Furthermore, the time selectivity of the fading channels leads to inter-carrier interference (ICI). While ICI can be ignored for slow fading channels, it should be mitigated for fast fading channels. This paper proposes an ICI mitigation scheme for time-varying channels. We also propose an iterative channel estimator with low-complexity. Simulation results demonstrate the usefulness of the proposed algorithm on frequency-selective fading channels.  相似文献   

17.
The performance of minimum-shift keying (MSK) and sinusoidal frequency-shift keying (SFSK) in adjacent-channel interference and frequency-selective fading is investigated analytically. The receiver system considered uses a sampling detector and hence is suboptimum. In addition to the above impairments, the system model incorporates other disturbances, namely stationary white Gaussian noise, quadrature channel interference, random timing misalignment, and random carrier phases of interfering signals. Results and comparisons are presented for both coupled effects and individual effects of frequency-selective fading, adjacent-channel interference, and quadrature-channel interference  相似文献   

18.
The bit error rate (BER) performance of π/4-differential quadrature phase shift keying (DQPSK) modems in cellular mobile communication systems is derived and analyzed. The system is modeled as a frequency-selective fast Rayleigh fading channel corrupted by additive white Gaussian noise (AWGN) and co-channel interference (CCI). The probability density function of the phase difference between two consecutive symbols of M-ary differential phase shift keying (DPSK) signals is first derived. In M-ary DPSK systems, the information is completely contained in this phase difference. For π/4-DQPSK, the BER is derived in a closed form and calculated directly. Numerical results show that for the 24 kBd (48 kb/s) π/4-DQPSK operated at a carrier frequency of 850 MHz and C/I<20 dB, the BER will be dominated by CCI if the vehicular speed is below 100 mi/h. In this derivation, frequency-selective fading is modeled by two independent Rayleigh signal paths. Only one co-channel is assumed in this derivation. The results obtained are also shown to be valid for discriminator detection of M-ary DPSK signals  相似文献   

19.
The performance of cross-coupled,M-ary quadrature amplitude modulation (QAM) systems is determined when bandwidth efficient trellis codes are used to combat interference. Performance with and without compensation for cross-coupled interference is presented. It is found that simple trellis codes can maintain the error probability at an acceptable level for cross-coupling parameters that render uncoded systems unusable. Up to two-dimensional trellis codes are considered for four-dimensional QAM signals, and possibilities of obtaining diversity advantages in the form of higher total system throughput by prolonged availability of the two signals are explored. This is accomplished through joint coding over two different constellations. The probability of the most likely error events is calculated by using the method of moments. The results are applicable to any digital communication system using multidimensional quadrature amplitude modulation, e.g., voiceband modems, cross-polarized radio systems and, to some extent, optical systems. In the paper the analysis is restricted to nondispersive cross-coupling models. In most cases the coding gain is larger than in the absence of cross-coupling interference. Specifically, it is found that simple codes have coding gains increased by at least 2 dB with cross-coupling interference relative to that obtained on the additive white Gaussian noise channel.  相似文献   

20.
This paper presents some trellis codes that provide high coding gain to channels with slow, non frequency-selective Rayleigh fading. It is shown that the use of two encoders in parallel-used to specify the in-phase and quadrature components of the transmitted signal-results in greater minimum time diversity than the conventional design in which a single encoder is used. Using this approach-which we label “I-Q TCM”-codes with bandwidth efficiencies of 1, 2, and 3 bits/s/Hz are described for various constraint lengths. The performance of these codes is bounded analytically and approximated via simulation; the results show a large improvement in the bit error rate (BER) when compared with conventional trellis-coded modulation (TCM) schemes when perfect channel state information (CSI) is available to the receiver. Indeed, when this approach is applied to channels with independent Rayleigh fading, the resulting coding gain is close to that implied by the cutoff rate limit, even for only moderately complex systems. The proposed codes are also simulated under less ideal assumptions. For instance, results for a 1-bit/s/Hz IQ-TCM code without CSI show a significant gain over conventional coding. Finally, simulations over channels with correlated fading were undertaken; it is concluded that an interleaver span of 4ν yields performance close to what is achieved with ideal interleaving  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号