首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
为解决在厌氧氨氧化反应进程中,厌氧氨氧化菌抗低温能力较差的问题,以聚乙烯醇-海藻酸钠为包埋剂包埋厌氧氨氧化污泥颗粒,采用UASB反应器研究了HRT对驯化过程中氨氮和亚硝态氮去除效果的影响,考察了温度变化对低温下包埋厌氧氨氧化菌颗粒脱氮效果的影响。结果表明,当进水氨氮浓度为50 mg/L,HRT为7 h时,投加15%包埋污泥后的UASB反应器具有较强的脱氮能力,对NH4+-N、NO2--N的去除率分别为95%和89%。相同条件下,水温从30℃阶梯式降低到14℃时,包埋厌氧氨氧化菌颗粒对NH4+-N的去除率从95%下降为70%,对NO2--N的去除率从89%下降为63%。在14℃下运行期间,调节水力停留时间为11 h可以提高脱氮效果,NH4+-N、NO2--N去除率分别在85%和79%左右。采用聚乙烯醇-海藻酸钠为包埋剂包埋厌氧氨氧化细菌,能大幅度提高低温胁迫下的脱氮性能。  相似文献   

2.
硫酸盐型厌氧氨氧化反应器的启动特征分析   总被引:7,自引:0,他引:7  
研究了硫酸盐型厌氧氨氧化反应器的启动特征及氧化还原电位对SO24-去除性能的影响。首先启动厌氧氨氧化并逐渐提高容积负荷至0.625kg/(m3.d),然后以(NH4)2SO4为唯一基质,启动硫酸盐型厌氧氨氧化。结果表明,历时212d后成功启动了硫酸盐型厌氧氨氧化反应器,对NH4+-N和SO42-的去除量分别为76.2、68mg/L。反应器出水的pH值低于进水的。当将氧化还原电位提高到(-43±10)mV时,硫酸盐型厌氧氨氧化受到抑制。较高的(NH4)2SO4浓度和低氧化还原电位有利于硫酸盐型厌氧氨氧化反应的发生。此外,该反应器还同时存在自养反硝化作用。  相似文献   

3.
通过批次试验和连续流试验研究了土霉素对厌氧氨氧化颗粒污泥脱氮性能的影响。厌氧氨氧化颗粒污泥反应器(UASB)进水NH_4~+-N浓度为40~50 mg/L,NO_2~--N浓度为55~65mg/L,温度控制为30℃,HRT控制为1.6 h。经过60 d运行,反应器的厌氧氨氧化脱氮性能良好,出水NH_4~+-N和NO_2~--N浓度分别为3.1和6.3 mg/L,对NH_4~+-N、NO_2~--N和TIN的去除率分别为91.2%、93.4%和75.2%。在土霉素对厌氧氨氧化颗粒污泥反应器的长期抑制试验中,颗粒污泥对土霉素具有一定的耐受能力,当进水中的土霉素浓度为10 mg/L时,反应器对NH_4~+-N和NO_2~--N的去除率分别为70.7%和70.8%;当进水中的土霉素为20 mg/L时,反应器对NH_4~+-N和NO_2~--N的去除率分别降低至16.8%和18.1%。与长期抑制试验相比,批次试验中土霉素对颗粒污泥厌氧氨氧化活性的抑制作用较小,土霉素浓度为50、100、150、200和400 mg/L时,对TIN的去除速率分别为0.498、0.480、0.439、0.326和0.120 kg N/(kg VSS·d)。  相似文献   

4.
常温低基质下pH值和有机物对厌氧氨氧化的影响   总被引:3,自引:0,他引:3  
在采用氧化沟回流污泥成功启动上向流厌氧氨氧化生物滤池的基础上,研究了常温、低基质条件下pH值和有机物对厌氧氨氧化反应器的影响.结果表明:pH值和有机物对厌氧氨氧化反应器的影响显著.在(20±1)℃下,厌氧氨氧化反应的最适pH值为6.7~8.5.当pH值<6.7或>8.5时,将导致游离氨(FA)和游离亚硝酸(FNA)的浓度分别高于8.93 mg/L和2.67×10-2 mg/L,抑制厌氧氨氧化反应.进水COD浓度的短期快速提高对厌氧氨氧化反应影响不大,但当COD长期维持在60 mg/L以上时,厌氧氨氧化反应受到明显抑制.停止投加COD,经过一段时间的运行后,生物滤池的厌氧氨氧化能力可以恢复到初始状态,对TN的去除率达到80%以上.  相似文献   

5.
金属离子对厌氧氨氧化反应器效能的影响   总被引:1,自引:0,他引:1  
以序批式生物膜反应器(SBBR)实现厌氧氨氧化,考察了铁、锰离子对厌氧氨氧化效能和细菌混培物生长的影响。经过180 d的培养发现,增加金属离子浓度可以提高反应器的脱氮效率,铁离子浓度为0.08 mmol/L或锰离子浓度达到0.05 mmol/L时,反应器对NH4+-N和NO2--N的去除率均稳定在95%以上;两反应器的VS值分别提高了1.33倍和1.57倍。表明添加金属离子可以促进厌氧氨氧化菌混培物的生长,这对于厌氧氨氧化工艺的运行有着重要的指导意义。  相似文献   

6.
短程硝化/厌氧氨氧化联合工艺处理含氨废水的研究   总被引:2,自引:1,他引:1  
在SBR中接种普通好氧活性污泥,通过控制运行条件来实现短程硝化,同时提高厌氧生物转盘系统中厌氧氨氧化的氮负荷,使之与SBR出水中NO2--N的积累量相匹配,并将二者组合形成短程硝化/厌氧氨氧化自养脱氮工艺.处理含氨废水的试验结果表明:在SBR的进水NH4+-N为150~250 mg/L、温度为(28±2)℃、pH值为7~8、DO<1 mg/L的条件下,可实现稳定的短程硝化,NO2--N积累率达85%以上,NH4+-N负荷达0.129 kgN/(kgVSS·d),AOB和NOB的数量之比为103:1.将短程硝化出水加入NH4+-N后作为厌氧氨氧化反应器的进水,在(40±1)℃下可以达到自养脱氮的目的,对NH4+-N、NO2--N和TN的去除率分别达86%、97%和90%以上,TN容积负荷为0.488 kgN/(m3·d).  相似文献   

7.
厌氧氨氧化与反硝化的协同作用特性研究   总被引:7,自引:0,他引:7  
在已稳定运行7个月的自养脱硫反硝化反应器中成功富集厌氧氨氧化菌后,利用反硝化菌的不完全反硝化作用为厌氧氨氧化菌提供NO2--N。以NH4+-N、NO3--N和有机物为基质,研究厌氧氨氧化与反硝化的协同作用,并探讨了其最适协同作用条件。反应器的有效容积为2L,遮光放置,通过恒温水浴维持反应器内温度为(33±0.5)℃,并投加活性炭作为填料。结果表明,厌氧氨氧化菌能与反硝化菌共存,反应器可实现厌氧氨氧化与反硝化的协同作用,且最适协同作用条件是:COD/TN=1.46、pH=7.55。  相似文献   

8.
采用SBR反应器,以硝化污泥和厌氧氨氧化(ANAMMOX)颗粒污泥的混合污泥为接种污泥,以有机模拟废水为研究对象,进行了厌氧氨氧化生物脱氮工艺研究。结果表明,在控制温度为25℃,水力停留时间为12 d,pH值为7.2~8.5,进水NH4+-N为220 mg/L左右、NO2--N为138 mg/L左右、COD为294 mg/L的条件下成功启动了SBR反应器。在高氨氮、低有机物浓度的条件下,ANAMMOX菌和异养反硝化菌能够实现共存,且ANAMMOX菌仍能成为优势菌属,AN-AMMOX反应是反应器中的主导反应。镜检发现,优势菌尺寸约为1μm,呈圆形或椭圆形,成簇聚生,表面可观察到明显的漏斗状缺口,具有典型的厌氧氨氧化菌特征。污泥中形成了以厌氧氨氧化球状菌为主、其他杆状菌和丝状菌共存的微生物混培体。  相似文献   

9.
采用厌氧产甲烷-部分半硝化-厌氧氨氧化组合反应器,以模拟城市污水为研究对象,探究低温胁迫下组合工艺的处理效能。结果表明:组合工艺在常温(26~28℃)下运行高效稳定,COD与NH+4-N去除率都稳定在85%以上。突然降温至15~17℃,COD与NH+4-N去除率有所下降,分别在72%和74%左右。组合工艺对COD和NH+4-N的去除效能整体比较稳定,具有较好的抗低温冲击能力,在低温下能够实现有效的脱氮除碳。  相似文献   

10.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

11.
利用厌氧氨氧化絮状污泥和厌氧颗粒污泥启动厌氧氨氧化颗粒污泥UASB反应器,通过调整进水基质浓度及上升流速培养富集厌氧氨氧化颗粒污泥。反应器经过140 d的运行,成功培养出厌氧氨氧化颗粒污泥,NH4+-N和NO2--N去除率分别达到96. 41%和99. 11%,总氮去除负荷可以达到0. 26 kg/(m3·d),并且ΔNO2--N/ΔNH4+-N和ΔNO3--N/ΔNH4+-N分别为1. 32±0. 02和0. 26±0. 01,符合厌氧氨氧化化学反应计量学规律。反应器启动过程中厌氧颗粒污泥经历了解体、重组,颜色由黑色变为灰色最终变为红色,经过160 d的运行后形成1~3 mm的厌氧氨氧化颗粒污泥。  相似文献   

12.
往一套UASB生物膜厌氧氨氧化反应器中加入葡萄糖促使反应器内反硝化菌增殖,然后迫使增殖的反硝化菌进行厌氧氨氧化反应以提高反应器的脱氮效果。结果显示:在反应器进水中加入葡萄糖后,系统对亚硝酸盐氮的去除率迅速提高到90%,但对氨氮的去除率变化不大,显示出反应器内同时发生了反硝化反应和厌氧氨氧化反应;当进水中停止投加葡萄糖后,仅运行10d,系统对氨氮、亚硝酸盐氮和总氮的去除率就分别达到了90%、98%和91%,一个月后对总氮的去除率达到99%。可见,在特定环境下可迫使反硝化菌进行厌氧氨氧化反应。  相似文献   

13.
针对污水厂尾水深度脱氮存在的碳源瓶颈,研究了基于ASBBR工艺的低氨氮废水厌氧氨氧化系统构建及效能。结果表明,在温度为(30±1)℃、氮负荷为0.025 kg/(m~3·d)的条件下,反应器经过51 d的启动,构建出低氨氮废水厌氧氨氧化系统,出水NH+4-N、TN分别为2.9、5.06 mg/L,平均TN去除率达到84.2%。在构建过程中,出水p H值逐渐提高,最后稳定在7.3左右,较进水值有小幅度提升,符合厌氧氨氧化特征。当氮负荷提高至0.05、0.075 kg/(m~3·d)时,系统对TN的平均去除率分别为85.1%和82.8%,仍可维持较佳的处理效能。  相似文献   

14.
向SBR反应器中接种成熟的厌氧氨氧化颗粒污泥,在氨氮、亚硝态氮浓度均为100mg/L的条件下,按C/N值=0.1添加乙酸钠,研究乙酸钠对厌氧氨氧化菌去除氮素的影响。结果表明,在存在乙酸钠的条件下,出水硝态氮生成量为没有乙酸钠情况下的45%,对总氮的去除率提高到90%以上,有利于出水总氮浓度达到一级A标准。验证了在C/N值=0.1条件下,厌氧氨氧化反应是反应器中的主体反应,没有被反硝化反应取代。厌氧氨氧化菌可利用乙酸钠和硝态氮的代谢机制也为降低短程硝化控制难度提供了一种思路。  相似文献   

15.
碱度和pH值对CANON工艺脱氮效果的影响   总被引:2,自引:0,他引:2  
在室温条件下,接种成熟的全程自养脱氮(CANON)污泥于小试SBR反应器中,通过调控不同的进水碱度和p H值,研究其对脱氮效果的影响。以Na HCO3调节碱度(ALK),当碱度(以Ca CO3计)不足(ALK/NH+4-N值1.6)时,氨氧化速率随着碱度的增加而增加;当碱度过量(ALK/NH+4-N值7.5)时,氨氧化速率随着碱度的增加而减小;当ALK/NH+4-N值为4.1时,好氧氨氧化速率为10.07 mg/(L·h),厌氧氨氧化速率为10.43 mg/(L·h),对总氮的去除率高达83.56%。在p H值梯度试验中,p H值为5.0时好氧氨氧化过程受到较强抑制,p H值为10.0时厌氧氨氧化过程受到较强抑制;p H值为5.0~8.0时氨氧化速率随p H值的增加而增加,p H值为8.0~10.0时氨氧化速率随p H值的增加而减小;p H值为8.0时好氧氨氧化速率为6.55 mg/(L·h),厌氧氨氧化速率为6.68 mg/(L·h),对总氮的去除率高达82.94%。  相似文献   

16.
污泥消化液作为污泥厌氧处理过程的副产物,具有低碳高氮的特点,传统生物脱氮技术难以有效处理。为此,利用固定生物膜-活性污泥反应器(IFAS),考察同步硝化、厌氧氨氧化和反硝化(SNAD)工艺对污泥消化液的处理效能。结果表明,在进水NH~+_4-N浓度为400 mg/L、HRT为18 h的最佳运行条件下,SNAD-IFAS系统对NH~+_4-N、TN与COD的最大去除率分别达到92.6%、77.1%和69.4%,TN去除负荷为12.4 mg/(L·h)。菌群特性活性分析结果表明,亚硝化过程主要发生在悬浮污泥中,厌氧氨氧化与反硝化过程主要发生在生物膜上。微生物群落分析表明,HRT的变化会显著影响微生物群落结构。  相似文献   

17.
以厌氧氨氧化(Anammox)污泥为种泥,进水中用SO_4~(2-)全部替代NO_2~--N作为电子受体来驯化污泥去氧化NH_4~+-N。反应器运行180 d后,NH_4~+-N去除量变化情况与Anammox菌活性变化情况相近,系统整体NH_4~+-N去除量在40 mg/L以上,但SO_4~(2-)并未去除,因此认为SO_4~(2-)不能作为电子受体来氧化NH_4~+-N,推测NH_4~+-N的去除可能存在其他电子受体;向反应器中添加5 mmol/L的羟氨能促进NH_4~+-N的去除,说明NH_4~+-N的去除与Anammox菌活性有关。反应器中Candidatus Brocadia和Candidatus Jettenia丰度由2.40%增至15.63%,Nitrosomonas属丰度由0.03%增至6.32%,Nitrobacter属丰度由0.12%增至1.54%,AOB活性大于NOB。菌群数量变化说明反应器中NH_4~+-N的去除与AOB、NOB以及Anammox活性有关。在批次实验中,向反应瓶中注入微量氧气后,氨氮的去除与AOB、NOB的硝化作用以及Anammox菌活性呈现显著相关,推测反应器中NH_4~+-N的去除与内部溶解氧量有关。  相似文献   

18.
亚硝化/厌氧氨氧化一体化反应器的启动特性分析   总被引:4,自引:0,他引:4  
以经常规处理后的养猪场废水成功启动自行设计的亚硝化/厌氧氨氧化一体化反应器,着重分析了一体化反应器供氧段和非供氧段的启动特性及处理效果.在启动期间,供氧段对COD、NH4+-N的最大去除率分别达72.24%、71.62%,通过调节曝气量控制系统内的DO浓度实现了稳定的亚硝态氮积累,且出水pH和NO2--N/NH4+-N值满足非供氧段进行厌氧氨氧化的要求;非供氧段可能同时存在反硝化和厌氧氨氧化过程,对NH4+-N、N2--N的最大去除率分别达55.10%、63.74%,脱氮效果明显;第115天,养猪场废水经一体化反应器处理后,对COD、NH4+-N、TN的去除率分别为73.07%、85.00%、67.23%,达到了深度处理的目的.  相似文献   

19.
考察了处理低氨氮废水的厌氧氨氧化颗粒污泥的脱氮特征、分层EPS组分及三维荧光光谱特性。结果表明,厌氧氨氧化颗粒污泥表现出高效的厌氧氨氧化活性,对NH+4-N和NO-2-N的平均降解速率分别为0.14和0.15 g/(g VSS·d),去除率分别为80.1%和97.0%;对TN的去除率为65.8%;该过程伴随N_2O的产生和短时积累,峰值浓度为0.92 mg/L,仅占TN转化率的2.52%;另外,p H值能指示厌氧氨氧化反应的终点。对分层EPS组分的分析可知,蛋白质为所有EPS层的主要成分,达226.9 mg/g VSS,占EPS总量的58.9%;绝大部分EPS为TB-EPS,占EPS总量的77.1%。三维荧光光谱显示蛋白质主要为酪氨酸和色氨酸,两者在TB-EPS中的荧光强度分别为165.5和46.1 AU/(mg C·L)。该研究结果为今后厌氧氨氧化污泥颗粒化的研究提供了理论依据。  相似文献   

20.
针对厌氧氨氧化反应(Anammox)存在的启动时间长和厌氧氨氧化菌(AAOB)繁殖条件苛刻等问题,采用电增强零价铁/升流式厌氧污泥床反应器(EEZVI/UASB)强化Anammox技术处理养殖废水,考察了p H值和电压对启动的影响,分析了颗粒污泥粒径分布、污泥形貌和Fe2+溶出情况。结果表明,启动过程可分为四个阶段,即AAOB活性迟滞期、显现期、提高期和稳定期。电增强零价铁技术能够缩短Anammox启动时间,并实现了Anammox工艺的稳定、高效运行,对NH+4-N和NO-2-N的去除率均可达98%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号