首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
采用活性无烟煤滤池与高压增氧系统联用技术,研究其处理排涝期原水氨氮与亚硝酸盐氮的效果,并与常规砂滤池进行了对比。结果表明,活性无烟煤滤池在排涝期对氨氮与亚硝酸盐氮的去除效果优于砂滤池,对氨氮的平均去除率为63.56%,当待滤水氨氮≤2.5mg/L时,活性无烟煤滤池出水氨氮均能小于0.5mg/L;对亚硝酸盐氮的平均去除率为73.88%。运行3年的活性无烟煤滤池在排涝期的处理效果与往年相比有所下降。  相似文献   

2.
在中试条件下,研究了纯氧曝气和活性无烟煤滤池联用对氨氮的去除效果。结果表明,当待滤水氨氮从0.8~1.0 mg/L突然升至约1.7、2.5、3.0 mg/L时,只要保证硝化反应所需的溶解氧浓度,采用活性无烟煤滤池过滤,在0.5~1 h内即可有效去除氨氮,运行12 h时滤后水氨氮分别降至0.05、0.08、0.21 mg/L;在待滤水氨氮为2.8~3.3 mg/L、DO为13.7~14.0 mg/L的条件下持续运行10 d,24 h之后滤后水中基本无亚硝酸盐氮积累,氨氮稳定在0.04~0.08 mg/L;采用微纳米曝气板进行纯氧曝气,去除2.5~3.0 mg/L氨氮所增加的运行成本为0.017~0.021元/m3,因而适用于水厂应对季节性、突发性氨氮污染。  相似文献   

3.
针对南方饮用水源水氨氮和有机物浓度季节性上升的特点,开展了活性无烟煤多功能滤池处理高氨氮原水的中试研究。中试处理规模为120 m3/d,滤速为8 m/h,原水氨氮平均浓度为3.1 mg/L。试验结果表明,滤池进水溶解氧浓度不足会导致工艺出水氨氮浓度高于《生活饮用水卫生标准》(GB 5749—2006),同时伴随有亚硝态氮的积累;当采用纯氧曝气提高滤池进水DO至11.9~13.6 mg/L后,活性无烟煤滤池的净水效果大幅提高,出水氨氮<0.1 mg/L,亚硝态氮浓度几乎为零,氨氮全部转化为硝态氮,氨氮有效去除浓度与所需DO浓度的比值平均为1∶4.49。在纯氧曝气条件下,滤池对氨氮的去除率达到97%,对CODMn和UV254的去除率均在44%左右。  相似文献   

4.
针对南方饮用水源水氨氮季节性、突发性污染的特点,在中试条件下,结合水厂传统制水工艺和活性无烟煤滤池联用纯氧曝气,探讨p H值对氨氮去除效果的影响机理,并进行成本核算,重点考察了砂滤池、活性无烟煤滤池、活性无烟煤联用纯氧曝气三组制水工艺在不调节p H值和调节p H值为7.2、7.4、7.6、7.8、8.0、8.2、8.4、8.6条件下氨氮浓度变化及去除量。结果表明,调节p H值后,对氨氮的去除效果提高。在p H值为8.0时,这三组工艺对氨氮的绝对去除量分别为1.23、1.72、3.05 mg/L,活性无烟煤联用纯氧曝气对氨氮的去除效果最好。投加Na OH调节p H值,待滤水相对于原水p H值下降,滤后水的p H值进一步降低;投加Na OH调节p H值为8.0,成本约为0.031元/m3水,适用于水厂应对季节性、突发性氨氮污染。  相似文献   

5.
在当前原水氨氮日益升高的情况下,优化砂滤池对氨氮的处理效果尤为关键。在原水中投加NaOH和NH4Cl溶液,中试结果表明:投加NaOH溶液后,原水pH值上升至8.5左右,而待滤水pH值只上升至7.6左右;滤后水DO的高低与滤池处理效果呈现一定的正相关。待滤水氨氮为0.91~1.90 mg/L,未投加NaOH溶液时,待滤水pH值在6.80~7.00,砂滤池对氨氮的平均去除率为54.81%;待滤水氨氮为1.25~1.91mg/L,投加NaOH溶液后,待滤水pH值在7.02~7.68之间,砂滤池对氨氮的平均去除率为70.26%。当待滤水氨氮升高至2.0mg/L时,滤后水中没有明显的NO-2-N积累,而当原水水质明显变差,待滤水氨氮升至2.38~3.21mg/L时,氨氮处理效果受到DO影响,NO-2-N有一定的积累。投加NaOH溶液一段时间后,即使待滤水浊度有较大幅度的升高,滤后水浊度均能稳定在0.3 NTU以下,显示出对浊度较好的去除效果。  相似文献   

6.
采用铁锰复合氧化物活性滤料滤池进行了低温高氨氮地表水处理试验研究,并与普通石英砂生物滤池进行对比。结果表明,铁锰复合氧化物活性滤料滤池对地表水中氨氮具有良好的去除效果,与普通石英砂生物滤池相比,在抗水力负荷、浓度负荷和反冲洗方面更有优势;当滤速分别为4、6、8 m/h时,铁锰复合氧化物活性滤料滤池对氨氮的平均去除率分别为97.2%、94.3%、93.5%,而相应条件下普通石英砂生物滤池对氨氮的平均去除率仅为84.1%、64.7%、58.0%;在滤速为8 m/h、滤层厚度为110 cm条件下,铁锰复合氧化物活性滤料滤池去除氨氮的最大浓度为2.30 mg/L,而普通石英砂生物滤池去除氨氮的最大浓度仅为1.50 mg/L;对浊度、有机物的去除,铁锰复合氧化物活性滤料滤池与普通石英砂生物滤池效果相当。  相似文献   

7.
通过中试对比研究了石英砂滤料与活性无烟煤滤料去除氨氮、亚硝酸盐氮、浊度的效果。结果表明,不增加待滤水溶解氧,将氨氮去除至0.5mg/L以下,活性无烟煤滤料进水氨氮含量应不高于2.0mg/L,而石英砂滤料应不高于1.0mg/L,且石英砂滤料会造成亚硝酸盐氮含量增加,两种滤料均能将出水浊度控制在0.5NTU以下。  相似文献   

8.
研究提高溶解氧的浓度对排涝期待滤水氨氮去除效果的影响。结果表明,氨氮浓度突然大幅上升,氨氮去除率不稳定,随着运行时间的延长,氨氮的去除率可趋于稳定。当待滤水氨氮浓度为3.0mg/L左右,提高溶解氧浓度可使氨氮去除率达到90%以上,溶解氧浓度越大,氨氮去除率也越大。待滤水氨氮浓度越高,去除效果越差。氨氮浓度为1.00~3.00mg/L时,氨氮平均去除率可达到95.27%,氨氮浓度为3.00~4.50mg/L时,氨氮平均去除率可达到77.54%,当氨氮浓度为4.50~6.00mg/L时,氨氮平均去除率达到61.61%。  相似文献   

9.
通过中试对比研究了石英砂滤料与活性无烟煤滤料去除氨氮、亚硝酸盐氮、浊度的效果.结果表明,不增加待滤水溶解氧,将氨氮去除至0.5mg/L以下,活性无烟煤滤料进水氨氮含量应不高于2.0mg/L,而石英砂滤料应不高于1.0mg/L,且石英砂滤料会造成亚硝酸盐氮含量增加,两种滤料均能将出水浊度控制在0.5NTU以下.  相似文献   

10.
在水厂实际运行过程中,通过对炭砂滤池与砂滤池长期运行过程中的处理效果进行比较,研究两种滤池对浊度、CODMn、NH3-H、UV254、TOC、三卤甲烷类消毒副产物的去除效果。结果表明:运行期间炭砂滤池出水平均浊度达到0.17NTU,而砂滤池出水平均浊度为0.22NTU;在前2个月炭砂滤池对CODMn的去除率平均可达60%,随后去除效果有所下降,并稳定在50%左右,砂滤池的去除率稳定维持在20%左右;运行初期炭砂滤池对氨氮的去除效果与砂滤池差别不大,当待滤水的氨氮浓度高达1.57mg/L时,炭砂滤池出水氨氮浓度降至0.36mg/L,而砂滤池出水只能降至0.97mg/L;运行期间炭砂滤池对UV254的去除率先高后低,而砂滤池对UV254的去除率基本稳定在10%以下;当待滤水TOC均值为2.18mg/L,炭砂滤池对TOC平均去除率达到42.28%,而砂滤池对TOC平均去除率仅为16.81%;炭砂滤池过滤后出水中三卤甲烷平均去除率达到34.25%,而砂滤池的平均去除率仅有16.62%。  相似文献   

11.
以南方某自来水厂待滤水为对象,通过比较纯氧曝气-活性无烟煤滤池与石英砂滤池的出水水质及滤料的生物活性,研究不同滤料的生物活性对滤池去除效果的影响。试验结果表明,纯氧曝气-活性无烟煤滤池长期运行后,其滤料的物理吸附容量已基本饱和,对污染物的去除主要依赖于生物膜的降解和粘附絮凝作用。在8m/h左右的滤速下,纯氧曝气-活性无烟煤滤池对有机物及氨氮都有较高的去除效果,并能有效控制后续消毒工艺中三卤甲烷的生成,其中,TOC的去除率为28.7%,COD_(Mn)的去除率为33.9%,低浓度氨氮能够彻底去除,并且能够将三卤甲烷的生成量降低20.8%,显著提高水厂的出水水质。  相似文献   

12.
通过测定滤料中微生物的比耗氧呼吸速率,对比4个不同生物滤池中异养菌、亚硝酸盐氧化菌和氨氧化细菌的活性及去除水中氨氮和亚硝酸盐氮的效果。结果表明,炭砂滤池异养菌、亚硝酸盐氧化菌和氨氧化细菌的平均比好氧呼吸速率分别是2.28mg/(L·g·h)、1.46mg/(L·g·h)和0.89mg/(L·g·h),活性无烟煤滤池的异养菌、亚硝酸盐氧化菌和氨氧化细菌的平均比好氧呼吸速率分别是0.86mg/(L·g·h)、2.00 mg/(L·g·h)和2.93mg/(L·g·h)。炭砂滤池对亚硝酸盐氮和氨氮平均去除率分别是87.02%和37.32%,活性无烟煤对亚硝酸盐氮和氨氮平均去除率分别是87.02%和42.76%。炭砂滤池主要以异养菌作用为主,活性无烟煤滤池以亚硝酸盐氧化菌和氨氧化细菌作用为主,控制氨氮及亚硝酸盐氮比炭砂滤池的效果显著。  相似文献   

13.
通过中试研究了活性无烟煤滤池在纯氧曝气条件下,对高氨氮的耐冲击负荷能力和响应时间。结果表明:进水氨氮在1. 38~1. 75 mg/L时,滤池显示出良好的去除氨氮效能,滤后水氨氮稳定在检出限(0. 02 mg/L)以下,没有NO_2~--N残留,能及时响应且无时间滞后。进水氨氮为2. 46~3. 07 mg/L时,出水平均氨氮为0. 18 mg/L,无NO_2~--N积累且能实现同步响应去除氨氮。进水氨氮在2. 71~3. 07 mg/L时,滤池能同步去除氨氮至0. 30 mg/L左右。进水氨氮在3. 61 mg/L左右时,出水平均氨氮达0. 99 mg/L,出水不达标;无NO_2~--N积累,进、出水NO_2~--N均在0. 020~0. 030 mg/L之间。  相似文献   

14.
纯氧曝气/平板陶瓷膜工艺处理微污染原水中试   总被引:1,自引:0,他引:1  
在中试规模的设备中研究了纯氧曝气/平板陶瓷膜与活性无烟煤过滤一体化集成工艺对微污染物的去除效果。纯氧曝气可以显著降低跨膜压差,陶瓷膜在通量为100 L/(m2·h)下运行5 d后跨膜压差仅增长约1.22 k Pa。纯氧曝气/陶瓷膜工艺能够有效截留浊度、铁离子、锰离子和二甲硫醚,去除部分颗粒态TOC,活性无烟煤滤池能够利用生物作用有效去除DOC、氨氮、土臭素和2-MIB;纯氧曝气/平板陶瓷膜—活性无烟煤过滤一体化工艺的出水浊度约为0.1 NTU,出水中粒径2μm的颗粒数小于50 CNT/m L,原水氨氮为3 mg/L时出水氨氮均值为0.08 mg/L,且无亚硝态氮积累,出水铁离子平均为0.009 mg/L,锰离子平均为0.027 mg/L,典型嗅味物质浓度低于检测限,大大提高了出水的安全性。因此,纯氧曝气具有显著的强化作用,该一体化工艺能实现对微污染原水的深度处理。  相似文献   

15.
沸石曝气生物滤池中亚硝酸盐氮积累的研究   总被引:1,自引:0,他引:1  
利用沸石曝气生物滤池研究了硝化反应中亚硝酸盐氮的积累现象。试验结果表明:同时增大滤速和进水氨氮浓度可以提高滤池出水中亚硝酸盐氮的浓度。在滤速为1 m/h、气水比为1∶1、水温为13~16℃、进水氨氮负荷为1.5~1.8 kg/(m3.d)的条件下,系统对氨氮的去除能力为0.7~0.9 kg/(m3.d),亚硝酸盐氮占硝化反应产物的90%以上。沸石的离子交换能力对滤池中氨氮浓度具有调节作用,有利于实现亚硝酸盐氮的稳定积累。  相似文献   

16.
通过采用不同的预氧化剂、不同预氧化剂与粉末活性炭联用以及不同滤料过滤等方式进行混凝搅拌试验和小试滤柱试验,研究了多种处理方法对去除水源水中臭味的效果。结果表明:预处理方法中0.3mg/L高锰酸钾与30mg/L粉末活性炭联用去除水源水中臭味的效果最好,能将臭味等级为4级的原水处理到臭味等级0级;滤料过滤处理中以活性炭和活性无烟煤为滤料的滤柱去除水源水中臭味的效果优于以石英砂和锰砂为滤料的滤柱去除臭味效果,以活性炭和活性无烟煤为滤料的滤柱能将臭味等级为4级的原水处理到臭味等级为1级。  相似文献   

17.
在中试过滤系统中,采用化学氧化法快速启动接触氧化滤池,即KMn O_4氧化Fe~(2+)、Mn~(2+)生成铁锰氧化物并沉积在石英砂表面形成活性氧化膜,通过活性氧化膜的化学作用同步去除水中NH_4~+-N、Fe~(2+)和Mn~(2+)。探究了滤池启动初期进水中Mn~(2+)被KMn O_4氧化2 mg/L后的富余量对滤池启动时间的影响,考察了Mn~(2+)富余浓度为0、1和2 mg/L三种挂膜条件下启动的滤池去除NH_4~+-N、Fe~(2+)和Mn~(2+)的能力以及滤速对除污效果的影响,启动后期不再投加KMn O_4。在滤池启动初期,进水Mn~(2+)富余2 mg/L的启动时间(15 d)比Mn~(2+)没有富余的滤池启动时间(27 d)缩短了44.4%,首次将滤池启动期缩短至20 d以内,此后可同步去除进水中1.5 mg/L的NH_4~+-N、1mg/L的Fe~(2+)和2 mg/L的Mn~(2+)。在所研究的滤速范围内(6~10 m/h),滤池除污能力受滤速影响较小,Fe~(2+)、NH_4~+-N和Mn~(2+)在滤池中依次被去除;滤池能同步去除Fe~(2+)、NH_4~+-N和Mn~(2+)的最大浓度为1、2和2 mg/L,满足多数受污染地下水的处理需求。另外,在处理高浓度氨氮(2 mg/L)进水时,溶解氧是限制因素。  相似文献   

18.
以南方地区某水厂砂滤池为例,研究了石英砂滤料去除氨氮和有机物效果随季节性的变化规律。结果表明,在春、夏和秋季石英砂滤料均能稳定有效地去除氨氮,在冬季石英砂滤料对氨氮的去除效果不稳定,待滤水氨氮高于1.0 mg/L时,出水氨氮含量5次测量结果均高于0.5mg/L;季节性变化对CODMn的去除效果影响较大,在秋、冬季石英砂滤料对CODMn的去除效果较春、夏季差;CODMn的去除效果不受氨氮浓度的影响。  相似文献   

19.
为解决北方地区某水厂低温水中氨氮去除难的问题,在现场开展了两级臭氧/生物增强活性炭工艺(O_3/BEAC)去除氨氮的中试研究。利用含一株能去除低温水中氨氮的新菌种HITLi7~T构成的优势功能复合菌剂,构建了生物增强活性炭(BEAC),分别考察了进水氨氮浓度、两级臭氧投加量、BEAC滤柱滤速及其反冲洗方式对该工艺去除氨氮效能的影响,并确定了最佳工艺运行参数。结果表明,随着进水氨氮浓度的变化,O_3/BEAC工艺对氨氮的去除率始终比O_3/BAC工艺高;当原水温度为0~2℃、氨氮为1.5 mg/L时,BEAC滤柱滤速为4.47 m/h,一级臭氧投加量为2 mg/L、二级臭氧投加量为1 mg/L,采用单独水洗10 min、水洗强度为8 L/(m~2·s)的反冲洗方式,可使O_3/BEAC工艺的氨氮去除效能达到最佳。  相似文献   

20.
低DO浓度下A/O型SBR工艺除污性能研究   总被引:1,自引:0,他引:1  
为了研究低DO浓度下对污染物的去除效果,采用SBR反应器,通过缺氧/好氧(A/O)的运行方式,考察了好氧段DO的平均值为1 mg/L时系统的除污效果,同时与好氧段DO平均值为2mg/L时系统的除污效果进行了对比.结果表明:在低DO浓度下,SBR工艺出水COD < 40mg/L,系统对COD的去除率在90%左右,对COD的去除效果略高于正常DO值条件下的;低DO浓度下,系统对氨氮的去除率在90%左右,对氨氮的去除效果低于正常DO值条件下的,但出水氛氮仍可保持在5 mg/L左右;系统的硝化反应速度较慢,反应结束时亚硝酸盐氮积累率为37%;NO--N生成速率与NH+-N氧化速率之比与DO浓度呈较好的线性关系;DO浓度对正磷酸盐的去除效果影响较小,系统对正磷酸盐的去除率>90%,出水正磷酸盐浓度<0.5mg/L;出水非常清澈,镜检可见丝状菌.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号