首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methane oxidation to formaldehyde was studied over a vanadium oxide catalyst supported on silica at 630 °C using the technique known as temporal analysis of products with sequential pulsing of methane and oxygen. This work shows that methane interacts very weakly and oxygen very strongly with the catalyst surface and it is concluded that the initial activation of methane involves an adsorbed oxygen species. Methyl radicals formed in the first step subsequently extract lattice oxygen to yield formaldehyde.  相似文献   

2.
A double layered catalyst bed of Sr/La2O3 followed by MoO3/SiO2 has been used to produce C2 hydrocarbons and formaldehyde from a CH4/air mixture with a formaldehyde space time yield of 187 g (kg cat)–1 h–1, which is significantly higher than those yields obtained with single bed catalysts or with mechanically mixed catalyst bed at ambient pressure and 630 ° C.  相似文献   

3.
New vanadium oxide supported on mesoporous silica catalysts for the oxidation of methane to formaldehyde were investigated by infrared and Raman spectroscopies to identify and characterize the molecular structure of the most active and selective catalytic sites. In situ and operando experiments have been conducted in order to understand the redox and hydroxylation/dehydroxylation processes of the vanadium species. (SiO)2VO(OH) species were identified in these catalysts in reaction conditions and shown to undergo a deprotonation at 580 °C under vacuum, leading to a site giving a photoluminescence band at 550 nm attributed to reverse radiative decay from the excited triplet state:

(V4+–O)*  (V5+O2−). An activation mechanism of vanadium monomeric species with electrophilic oxygen species is proposed.  相似文献   


4.
Silica supported K2MoO4 and potassium-promoted MoO3 were used as catalysts for the partial oxidation of ethane in fix-bed continuous-flow reactor at 770–823 K using N2O as oxidant. The main products of the oxidation reaction were ethylene, acetaldehyde, CO and CO2. Addition of various compounds of potassium to the MoO3/SiO2 greatly enhanced the conversion of ethane and influenced the product distribution. The highest rate and selectivity for acetaldehyde formation was found on a K2MoO4/SiO2 catalyst.  相似文献   

5.
Two sets of WO3/SiO2 catalysts were prepared from (NH4 6H2W12O40 (aqueous method) and W(3-C3H5)4 (non-aqueous method). The molecular structures and dispersions of the surface tungsten oxide species for the WO3/SiO2 catalysts under ambient and in situ dehydrated conditions were investigated by Raman spectroscopy. The samples prepared from (NH4)6H2W12O40 (aqueous method) exhibit very strong Raman features due to the presence of crystalline WO3 and the samples prepared from W(3-C3H5)4 (non-aqueous method) do not possess crystalline WO3. These results suggest that the preparation method exerts an influence on the dispersion of the surface tungsten oxide species on SiO2. The surface tungsten oxide species under ambient conditions possess polytungstate clusters, W12O 42 12– , on the silica support. Upon dehydration at elevated temperatures, the hydrated polytungstate clusters decompose and interact with the silica support via the formation of isolated, octahedrally coordinated tungsten oxide species.  相似文献   

6.
Several commercial silica samples showing different catalytic activities in the partial oxidation of methane (MPO) to formaldehyde have been investigated using FTIR technique. Two IR absorption bands at 893 and 909 cm–1, observed upon dehydroxylation of the silica catalysts and assigned to reactive siloxane sites on the surface (strained siloxane bridges), were found to disappear upon heating in methane at high temperature. The catalytic activity increases together with the intensity of the bands due to such strained sites in the different SiO2 samples.  相似文献   

7.
A series of silica-supported molybdena catalysts with variable molybdenum content has been prepared and tested in the selective oxidation of methane to formaldehyde. The nature of the supported oxide phases has been studied by Fourier transform IR of chemisorbed NO molecule, X-ray photoelectron spectroscopy, UV-Visible reflectance and X-ray diffraction techniques. The results show that molybdenum oxide is highly dispersed on the silica at low molybdenum concentrations where two-dimensional polymolybdates are developed. Three-dimensional MoO3 crystals grow in the region of high molybdenum concentrations. The analysis of the combined data suggests that there is a close relationship between methane conversion and formaldehyde selectivity and the presence of highly dispersed polymolybdate structures on the silica surface.  相似文献   

8.
A series of Rh-Mo/ZrO2 catalysts with fixed Rh and different Mo loadings were prepared and characterized by H2 chemisorption, XRD, TPR, TEM and XPS. The catalysts were studied in two reactions: the hydrogenation of carbon monoxide and the hydrogenation of toluene. The results suggest that the increase in the Mo content produces a partial coverage of the support and the Rh particles. Moreover, at high Mo coverage, an increase of the MoO3 layer thickness is produced. After being treated in hydrogen, the molybdenum oxide remains as slightly reduced particles, while Rh is essentially as Rh0, with only a small contribution of Rh+ species. The Mo promotes the formation of oxygenates in the CO hydrogenation and it does not affect the activity in the hydrogenation of toluene.  相似文献   

9.
Silica-supported vanadium (1–8 wt%) and vanadium (5 wt%)-sodium (0.4 wt%) catalysts have been characterized by laser Raman spectroscopy, temperature-programmed reduction, X-ray photoelectron spectroscopy, NO + NH3 rectangular pulses and oxygen chemisorption. The presence of different vanadium species was correlated with activity and selectivity during the methane partial oxidation reaction. The pre-impregnation of the silica support with sodium favors vanadium dispersion, but strongly diminishes V=O concentration due to the formation of orthovanadate-like compounds. As a result of these modifications, methane conversion is strongly inhibited while formaldehyde decomposition is favored.  相似文献   

10.
The selective oxidation of methane has been studied both in the presence and absence of solids (inert or catalysts) with and without NO added, at 1 bar of total pressure. NO enhances the yield to formaldehyde, while the solids favor its decomposition. These results, together with abundant literature data, show a maximum for formaldehyde yield of about 4.0%.  相似文献   

11.
The activity of the various CuO species found in supported copper catalysts and the effect of the presence of reaction products, CO2 and H2O, was studied during the complete oxidation of methane. Series of copper catalysts supported on ZrO2, Al2O3 and SiO2 with different metal concentrations were analyzed under identical experimental conditions of reactant concentration and temperature. The catalysts were characterized by TPR, UV–vis spectroscopy and XRD. The results show that the activity of supported CuO is closely related to the kind of Cu species formed on the different supports. It was found that the Cu species formed on ZrO2 and Al2O3 are dependent on the metal loading/support's surface area ratio, and that the activity of highly dispersed Cu is substantially higher than that of bulk CuO. In the case of silica, only the formation of bulk CuO was detected, accounting for the low activity of CuO/SiO2 catalysts. The activity of highly dispersed Cu species formed on ZrO2 is higher than those formed over Al2O3, and it is not significantly affected by the formation of bulk CuO on the surface. On the contrary, the activity of copper species formed on alumina decreases continuously as the Cu loading is increased. Thus, for the range of copper loading studied in this work, the activity of the catalysts, per gram of loaded Cu, follows the sequence: CuO/ZrO2 > CuO/Al2O3  CuO/SiO2. It was also found that CO2 does not inhibits the activity of the CuO/ZrO2 catalysts, while water inhibits the combustion reaction of methane, with an estimated reaction order of about −0.2 for temperatures between 360 °C and 420 °C.  相似文献   

12.
The product distributions for partial oxidation of methane on Fe2(MoO4)3 catalyst were changed remarkably when the oxidant was switched from oxygen to nitrous oxide. When oxygen was used as the oxidant, the main products were HCHO and CO. However, when nitrous oxide was used, the formation of HCHO was greatly suppressed and C2 hydrocarbons (C2H6 and C2H4) were newly produced. The difference in kinetic behaviors between the two reactions using nitrous oxide and oxygen as the oxidant can be explained in terms of the competitive conversions of methyl intermediate into HCHO and C2H6. In the case of nitrous oxide as the oxidant, the adsorbed methyl intermediate would be transformed predominantly into C2H6 due to a low steady-state concentration of the active oxygen species on Fe2(MoO4)3.  相似文献   

13.
NiO-LnO x (Ln = lanthanide) catalysts (with NiLn=11) without prereduction show high activity/selectivity and very high productivity in the oxidative conversion of methane to CO and H2. The catalysts are first activated in the initial reaction, which is started at 535–560°C, by the reduction of NiO and creation of active sites. The carbon deposition on the catalysts in the reaction, particularly for the NiO-Gd2O3, NiO-Tb4O7 and NiO-Dy2O3 catalysts, is quite fast but it has caused a little or no influence on the catalytic activity/selectivity. Pulse reaction of pure methane on NiO-Nd2O3 (at 600°C) shows involvement of lattice oxygen in the initial reaction and also reveals formation of carbon from CO on the catalyst reduced in the reaction.  相似文献   

14.
A set of Co promoted 10% Mo/Al2O3 samples have been characterized by means of Raman spectroscopy under ambient as well as in situ dehydrated conditions. Under ambient conditions, the degree of the polymerization of surface molybdenum oxide species decreases with increasing Co loading. Under dehydrated conditions, the polymeric molybdenum oxide species is absent with the addition of only 0.2% Co. At low Co loadings (2%), before the formation of CoMoO4 compound, the spectral features are very similar under ambient conditions. Dehydration causes the upward shift of the Mo=O symmetric stretching mode. A broad band around 920–930 cm–1 was thus observed. This band has been suggested to be associated with the Co-Mo interaction species. In contrast to crystalline CoMoO4, this species shows a reversibility on H2 reduction-O2 reoxidation treatments. From the results obtained, it is proposed that cobalt oxide interacts with the most polymerized molybdenum oxide species to form Co-Mo interaction species and/or crystalline CoMoO4; therefore, the amount of the surface molybdenum oxide species decreases with a change in the molecular structure as a function of the Co concentration.  相似文献   

15.
Molybdenum trioxide samples having apparent particle sizes (APS) of 5 and 20 .m were partially reduced under flow of a mixture of H2/n-heptane during 4 h. X-ray diffraction and Raman spectroscopy showed the typical structural transformation of MoO3 into MoOxCy and MoO2. These structural changes occur preferentially on the {0k0} planes. After the reduction treatment the resulting materials, having surface areas of 23 and 53 m2/g, were evaluated in the isomerization of n-heptane at 643 K and 18.5 bar. The catalyst with an APS of 20 .m showed a maximum conversion around 70%, while for the catalyst with an APS of 5 .m the maximum conversion was 34%. The lower activity of the 5 .m MoOxCy catalyst seems to be related to a faster rate of formation of oxygen vacancies and rearrangement of the lattice into a more stable and less active structure in the case of small-size particles, due to a higher concentration of terminal Mo=O bonds along the a- and b-axes, which facilitate the electrophilic attack by hydrogen on the (010) plane.  相似文献   

16.
Nickel-calcium phosphate/hydroxyapatite catalysts have recently been reported to exhibit high activity and selectivity in partial oxidation of methane (POM). In this work the optimum composition was determined. The optimum mole ratio of Ca/PO4 was around 10/6 and that of Ni/PO4 was in a range from 1.0/6 to 3.0/6 with the optimum Ca/PO4, and the activity could be related with the amount of metallic nickel. In a temperature range from ca. 400 to 700 K, an apparent autothermal reaction was observed to occur in some cases. This is due to the fact that the actual catalyst temperature is higher than the measured temperature, which comes from the exothermic nature of the reaction. The mixing sequence of the precursors during the catalyst preparation does little affect the catalyst activity and characteristics. Deactivation of the catalyst occurred slowly, but the catalyst could easily be regenerated. Moreover, the nickel-calcium phosphate/hydroxyapatite catalyst showed higher activity than the nickel-strontium phosphate catalyst. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

17.
Precipitated silica catalysts loaded with either MoO3 (0.2–4.0 wt%) or V2O5 (0.2–5.3 wt%) have been studied in the selective partial oxidation of methane to formaldehyde with molecular oxygen at 520 °C. The functionality of the SiO2 surface towards the formation of HCHO is significantly promoted by V2O5, while it is depressed by the MoO3.  相似文献   

18.
Catalytic performance for partial oxidation of methane (POM) to synthesis gas was studied over the Rh/Al2O3 catalysts with Rh loadings between 0.1 and 3 wt%. It was found that the ignition temperature of POM reaction increased with the decreasing of the Rh loadings in the catalysts. For the POM reaction over the catalysts with high (≥1 wt%) Rh loadings, steady-state reactivity was observed. For the reaction over the catalysts with low (≤0.25 wt%) Rh loadings, however, oscillations in CH4 and reaction products (CO, H2, and CO2) were observed. Comparative studies using H2-TPR, O2-TPD and high temperature in situ Raman spectroscopy techniques were carried out in order to elucidate the relation between the redox property of the Rh species in the Rh/Al2O3 with different Rh loadings and the performance of the catalysts for the reaction. Three kinds of oxidized rhodium species, i.e. the rhodium oxide species insignificantly affected by the support (RhOx), that intimately interacting with the Al2O3 surface (RhiOx) and the Rh(AlO2)y species formed by diffusion of rhodium oxides in to sublayers of Al2O3 [C.P. Hwang, C.T. Yeh, Q.M. Zhu, Catal. Today, 51 (1999) 93.], were identified by H2-TPR and O2-TPD experiments. Among them, the first two species can be easily reduced by H2 at temperature below 350 °C, while the last one can only be reduced by H2 at temperature above 500 °C. The ignition temperatures of POM reaction over the catalysts are closely related to the temperature at which most of the RhOx and RhiOx species can be reduced by CH4 in the reaction mixture. Compared to the Rh/Al2O3 with high Rh loadings, the catalysts with low Rh loadings contain more RhiOx species which possess stronger RhO bond strength and are more difficult to be reduced than RhOx by the reaction mixture. Higher temperature is therefore required to ignite the POM reaction over the catalysts with lower Rh loadings. The oscillation during the POM reaction over the Rh/Al2O3 with low Rh loadings can be related to the behaviour of Rh(AlO2)y species in the catalyst switching cyclically from the oxidized state to the reduced state during the reaction.  相似文献   

19.
Kinetic study of CO oxidation in combination with experiments of temperature-programmed oxidation (TPO) and reduction (TPR) have been performed on various unsupported crystalline manganese oxides (MnOx); while the reactivity shows an order of MnO ≤ MnO2 < Mn2O3 in a mixture of unit ratio of O2/CO at/below 523 K. We propose that under the current conditions the interaction of adsorbed CO and O is mainly responsible for CO2 formation on Mn2O3 and MnO2 catalysts, following either the Langmuir–Hinshelwood mechanism or Eley–Rideal mechanism. Meanwhile, direct evidence from transient CO oxidation suggests that the Mars-van-Krevelen mechanism may occur for all catalysts simultaneously, especially, it is predominant for the MnO catalyst. The evidence of structural modifications during reaction was confirmed by Raman spectra obtained from used MnO.  相似文献   

20.
Temperature-programmed reduction (TPR), oxidation (TPO), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to characterise catalysts based on manganese oxides, copper oxides or one of them mixed with platinum or palladium-supported on γ-alumina. The catalysts were characterised before and after they had been exposed either to high temperature in the presence of steam or to sulphur dioxide. Raman spectroscopy, XRD, XPS and TPR performed on the fresh samples of MnOx, mixed MnOx–Pt and MnOx–Pd revealed the presence of a mixture of manganese oxides, particularly Mn2O3. In the fresh mixed MnOx–Pd and CuOx–Pd samples, Pd catalysed the reduction of both MnOx and CuOx, whereas Pt only catalysed the reduction of MnOx. After hydrothermal treatment at 900°C of the MnOx, mixed MnOx–Pt and MnOx–Pd samples, there was a formation of new manganese oxide phase, Mn3O4 detected by Raman spectroscopy. TPR revealed increasing interaction between the metal oxides and the noble metals in the hydrothermally treated mixed MnOx–Pd and CuOx–Pd samples, and also the appearance of interaction in the treated mixed CuOx–Pt sample. The sulphur adsorbed in all the MnOx samples formed sulphate, which was more difficult to reduce than the oxides. Also, the reduction temperature of sulphates was lowered when noble metals are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号