首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
利用溶液化学反应法制备了准一维微/纳米结构的金属有机配合物Ag(TCNQ);X射线衍射(XRD)表明所制备的Ag(TCNQ)为晶态结构;扫描电子显微镜(SEM)的观察表明Ag(TCNQ)为准一维的微/纳米管或线.首先在自行研制的材料光学性能测试系统上对单根Ag(TCNQ)的光致变色特性进行测试,激光照射后颜色由深蓝变黄;然后利用显微Raman光谱仪对其光致变色机理进行了研究,激光照射后的光谱图中出现了明显的TCNQ分子的特征中性峰.如照射时间较长,超过30s,则TCNQ分子特征峰又消失.因此Raman测试结果证明单根Ag(TCNQ)微/纳米结构具有明显可逆的光致变色特性.  相似文献   

3.
The stability of N-[(morpholine)methylene]-daunorubicin hydrochloride (MMD) was investigated in the pH range 0.44-13.54, at 313, 308, 303 and 298 K. The degradation of MMD as a result of hydrolysis is a pseudo-first-order reaction described by the following equation: ln c = ln c(0) - k(obs)? t. In the solutions of hydrochloric acid, sodium hydroxide, borate, acetate and phosphate buffers, k(obs) = k(pH) because general acid-base catalysis was not observed. Specific acid-base catalysis of MMD comprises the following reactions: hydrolysis of the protonated molecules of MMD catalyzed by hydrogen ions (k(1)) and spontaneous hydrolysis of MMD molecules other than the protonated ones (k(2)) under the influence of water. The total rate of the reaction is equal to the sum of partial reactions: k(pH) = k(1) ? a(H)+ ? f(1) + k(2) ? f(2) where: k(1) is the second-order rate constant (mol(-1) l s(-1)) of the specific hydrogen ion-catalyzed degradation of the protonated molecules of MMD; k(2) is the pseudo-first-order rate constant (s(-1)) of the water-catalyzed degradation of MMD molecules other than the protonated ones, f(1) - f(2) are fractions of the compound. MMD is the most stable at approx. pH 2.5.  相似文献   

4.
Ag(TCNQ)是一种电荷转移型金属有机络合物。用真空蒸发与真空热压相结合的方法使它分散到PMMA ,PHPMA ,PC等高分子树脂中 ,制成了不含任何有机溶剂的透明光学薄膜 ,并证实了它具有光热透镜效应。  相似文献   

5.
Ag(TCNQ)纳米线的制备和电学特性研究   总被引:2,自引:1,他引:1  
提出了一种新的制备有机金属配合物纳米线的方法,即饱和蒸气反应法,并解释了它的生长机理。用这种方法制备的Ag(TCNQ)[TCNQ,tetracyanoquinodimethane]纳米线(棒)基本垂直于基板。截面近似呈方形,边长<100nm,长度(高度)可控,生长温度低(≤120℃),因而在实际应用过程中容易与其它工艺兼容。在STM针尖和导电AFM针尖电场作用下这种纳米线(棒)具有电双稳特性,预期在纳米电子学方面有广泛的应用前景。  相似文献   

6.
The chemical reaction between Ag nanoparticles (Ag NPs) and 7,7',8,8'- tetracycanoquinodimethane (TCNQ) microparticles (MPs) in aqueous solution for the formation of Ag-NP-decorated Ag-TCNQ nanowires is reported. Based on the results obtained by UV-vis spectroscopy and scanning electron microscopy (SEM), it is proposed that the reaction between Ag NPs and TCNQ MPs includes three stages, namely, aggregation of NPs and MPs, diffusion and reaction between NPs and MPs, and formation of Ag-TCNQ nanowires. The as-synthesized semiconducting Ag-TCNQ nanowires show good performance in nonvolatile memory devices with multiple write-read-erase-read (WRER) cycles in air.  相似文献   

7.
Intact photosensitive cyclometalated RuII derivatives of 2-phenylpyridine or N,N-dimethylbenzylamine cis-[Ru-(C approximately N)(LL)X2]PF6 [C approximately N = o-C6H4-py or o-C6H4CH2NMe2; LL = 1,10-phenanththroline (phen), 2,2'-bipyridine (bpy), or 4,4'-Me2-2,2'-bipyridine (Me2bpy); X = MeCN or pyridine (py)] are efficient mediators of glucose oxidase (GO) from Aspergillus niger and horseradish peroxidase (HRP). Their redox potentials in an aqueous buffer are in the range 0.15-0.35 V versus SCE, and the rate constants for the oxidation GO(red) (where red indicates reduced) by the electrochemically generated RuIII species equal (1.7-2.5) x 10(6) M(-1) s(-1) at pH 7 and 25 degrees C. The redox potentials of all complexes decrease cathodically by 0.4-0.6 V upon irradiation by visible light because of the photoinduced solvolysis of acetonitrile or py ligands. These in situ generated species display an even better mediating performance with HRP, although their behavior toward GO is different. The loading of a ruthenium unit into the protein interior brings about large catalytic currents in a self-assembled system GO-Ru-D-glucose. The estimated rate constant for intramolecular electron transfer from FADH2 of the active site at RuIII, k(intra), equals 4.4 x 10(3) s(-1). This suggests that the distance between the redox partners is around 19 A. The value of 21 A was obtained through the docking analysis of a possible closest-to-FAD localization of a Ru-containing fragment derived from the irradiated complex cis-[Ru(o-C6H4-py)-(phen)(MeCN)2]PF6. The operational stability of the GO-Ru assemblies depends on the nature of complex used, the highest being observed for cis-[Ru(o-C6H4-py)(Me2-bpy)(MeCN)2]PF6 (2). UV-vis studies of interaction of 2 with GO revealed photomechanical oscillations in the system GO-Ru-D-glucose. When irradiated complex 2 is mixed with GO and D-glucose, the absorbance at 510 nm increases because of the enzymatic reduction of RuIII to RuII. The absorbance drops rapidly and then increases as in the first cycle after shaking the reaction solution. Many cycles are possible, and the rate of absorbance increase does not depend on a cycle number. A plausible mechanism of the oscillations is presented.  相似文献   

8.
本文采用X光电子谱仪 (XPS)研究了Ag TCNQ薄膜的电双稳态特性。对TCNQ粉末、热处理前后的TCNQ薄膜及Ag TCNQ薄膜作了分析。结果发现 ,真空蒸镀及大气环境中热处理不会引起TCNQ化学状态的变化 ,而热处理会促使Ag与TCNQ发生反应 ,薄膜电双稳态特性的优劣则与反应程度有关。最后讨论了这一现象的可能机理  相似文献   

9.
The kinetics and product distributions of the reactions of dimethyl disulfide (DMDS) have been investigated with a group of chemical background ions commonly observed in atmospheric pressure ionization (API) mass spectrometry (MS) in order to assess the value of this molecule in filtering (or "scrubbing") these ions by changing their mass/charge (m/z) ratio. The measurements were taken with a novel electrospray ionization/selected ion flow tube/QqQ tandem mass spectrometer. The background ions studied include those with m/z 42 (protonated acetonitrile, ACN), 83 (protonated ACN dimer), 99 (protonated phosphoric acid), 117 (water cluster of m/z 99), 131 (methanol cluster of m/z 99), 149 (protonated phthalic anhydride, formed from the phthalates), and 327 (protonated triphenyl phosphate). In addition, reactions of DMDS have been studied with two model analytes--protonated caffeine and doubly protonated bradykinin--in order to assess the selectivity of DMDS reactivity. All the measurements were taken at 295 +/- 2 K in helium buffer gas at a pressure of 0.35 +/- 0.01 Torr. DMDS was observed to react efficiently with m/z 42 (ACNH+), 149 (from phthalates), and 99 (protonated phosphoric acid), with k/kc=0.91, 0.47, and 0.38, respectively. Only proton transfer was observed with ACNH+, followed by the secondary reaction of [DMDSH]+ with DMDS to yield [CH3S-S(CH3)-SCH3]+. Ligation of DMDS was the dominant primary channel observed for the reaction of the m/z 149 background ion; however, some proton transfer also was observed. Both of these primary product ions react further with DMDS to yield [CH3S-S(CH3)-SCH3]+, the structure of which we have determined computationally using DFT calculations. Only the sequential ligation with two DMDS molecules was observed for the reaction of the m/z 99 ion. Reactions of DMDS with m/z 117 [H3PO4 + H + H2O]+ and m/z 131 [H3PO4 + H + MeOH]+ were observed to proceed with k/kc=0.71 and 0.058, respectively. Ligand substitution of DMDS for H2O predominated ( approximately 94%) over DMDS ligation ( approximately 6%) in the reaction with m/z 117, while only DMDS ligation was observed for the reaction of m/z 131 with DMDS. In contrast, the reactions of DMDS with ions of m/z 83 (protonated dimer of ACN) and 327 (protonated triphenyl phosphate) were extremely inefficient, with k/kc=0.0042 and 0.0079, respectively. The higher reactivity of DMDS toward ACNH+ (m/z 42) compared to (ACN)2H+ (m/z 83) is attributed to the lower proton affinity of the unsolvated ACN. The reactivity of DMDS toward the two model analyte ions studied-protonated caffeine and doubly protonated bradykinin-was negligible, with k/kc=0.0073 and 0.010, for the respective reactions. These results suggest that, under appropriate reagent pressure conditions, DMDS can be an appropriate reagent for chemically filtering out many common API-MS background ions, without significantly affecting the observed intensity of analyte peaks.  相似文献   

10.
Enzyme-amplified amperometric sandwich test for RNA and DNA.   总被引:3,自引:0,他引:3  
A one-step enzyme-amplified amperometric sandwich hybridization test for RNA and DNA is described. The test utilizes a carbon electrode, modified with a film of co-electrodeposited avidin and redox polymer; the redox polymer electrically "wiring" horseradish peroxidase (HRP) reaction centers upon contact. The film is made specific for the particular RNA or DNA sequence tested by conjugating its avidin with a biotinylated oligonucleotide, complementary to the assayed sequence. This oligonucleotide-modified redox polymer film, prepared prior to the test, forms the base of the sandwich. The center layer of the sandwich, added in the test, is the analyte RNA or DNA; its top is a second complemetary oligonucleotide, which is HRP-labeled, and is cohybridized in the test. The test consists of mixing the analyte DNA or RNA solution, the HRP-labeled oligonucleotide solution, and a hydrogen peroxide solution, immersing the base-layer carrying electrode applying a potential of 0 V versus Ag/AgCl, and measuring the H2O2 electroreduction current. Completion of the sandwich brings the HRP label into electrical contact with the redox polymer, converting the nonelectrocatalytic base layer into an electrocatalyst for the electroreduction of H2O2 to water. Flow of H2O2 electroreduction current when the electrode is poised near Ag/AgCl potential indicates the presence of the analyte RNA or DNA. The current density for the maximally sandwich-covered electrode was 250 microA cm(-2), exceeding more than a 100-fold the current density flowing upon nonspecific binding of the HRP-labeled oligonucleotide. High concentrations of irrelevant DNA and diluted serum did not interfere with the assay. When the electrodes were rotated in order to make the solution-phase mass transport rapid, the test was completed in approximately 30 min. The test was applied in probing for the presence of a 60-base E. coli mRNA sequence.  相似文献   

11.
Ag(TCNQ)纳米晶须的生长机理   总被引:1,自引:1,他引:1  
本文采用真空饱和蒸汽反应法在相对较低的温度下制备了一系列一维纳米结构的金属有机配合物Ag(TCNQ).用多晶XRD谱表征了样品的成份和晶体结构,通过SEM观察到了不同生长阶段的形貌.纳米晶须的生长分别经历了溶解、结晶和单向生长三个阶段.在此基础上,利用VLS模型初步解释了其生长机理.  相似文献   

12.
研究了用真空分层蒸镀法获得的金属/有机双层膜(Ag-TCNQ)中的层间扩散行为.根据Cu、Ag在与TCNQ形成络合物时表现出的相似性,建立了异质元素标志法,以Cu为标志元素,研究了金属有机络合物Ag-TCNQ形成过程中Ag扩散的微观机制.使用二次离子质谱(SIMS)分析了Cu、Ag元素在不同样品膜中的浓度分布及变化情况.结果表明,不同于纯金属薄膜中Cu、Ag清晰的界面,在络合物中的Cu与Ag之间存在交叉,说明两种离子之间存在着交换现象.由此可以推断,薄膜中的扩散机制是Ag离子在Ag-TCNQ络合物中的换位扩散.  相似文献   

13.
A thin-layer electrochemical flow cell coupled on-line with electrospray mass spectrometry (EC/ES-MS) was used to investigate the soluble products from the controlled-potential anodic polymerization of aniline in H(2)O and H(2)O/CH(3)OH (1/1 v/v) with ammonium acetate and acetic acid or ammonium hydroxide as electrolytes (pH 4, 6.5, or 9). At a working electrode (glassy carbon) potential of 1.0 V versus Ag/AgCl, singly protonated aniline oligomers containing as many as 10 aniline units (10-mer) were observed in the ES mass spectra when the polymerization in H(2)O/CH(3)OH at pH 4 was carried out. The abundance of the higher n-mers decreased at higher solution pH and in 100% H(2)O at pH 4. Most of the oligomers were observed in more than one redox state ranging from fully oxidized (all imine nitrogens) to fully reduced (all amine nitrogens). The number of different redox states observed for the n-mers increased with increasing n. The structures of the reduced (m/z 185) and oxidized (m/z 183) aniline dimer ions (head-to-tail, tail-to-tail, or head-to-head) produced from the polymerization of aniline at pH 4, 6.5, and 9 in H(2)O/CH(3)OH were revealed to vary as a function of pH by comparison of their tandem mass spectrometry product ion spectra with the product ion spectra of the dimer standards. EC/ES-MS potential scan experiments, in which the working electrode current and major n-mer ions for n = 2, 3, and 4 were monitored as a function of electrode potential, were used to probe the growth mechanism to higher aniline oligomers. Under the conditions used, the controlled-current electrolytic process inherent to the operation of the ES ion source did not significantly influence the formation or nature of the oligomers observed. Beyond the current application, the results presented here serve to demonstrate the utility of EC/ES-MS as a tool in identifying the initial products of electropolymerization and in studying the products of electrode reactions in general.  相似文献   

14.
Argentinated peptide ions are formed in abundance under matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) conditions in the presence of Ag+ ions. These argentinated peptide ions are fragmented facilely under MALDI-MS/MS conditions to yield [b(n) + OH + Ag]+, [b(n) - H + Ag]+ and [a(n) - H + Ag]+ ions that are indicative of the C-terminal sequence. These observations parallel those made earlier under electrospray MS conditions (Chu, I. K; Guo, X.; Lau, T.-C.; Siu, K W. M. Anal. Chem. 1999, 71, 2364-2372). A mixed protonated and argentinated tryptic peptide map was generated from 37 fmol of bovine serum albumin (BSA) using MALDI-MS. MALDI-MS/MS data from four argentinated peptides at a protein amount of 350 fmol unambiguously identified the protein as BSA. Sequence-tag analysis of two argentinated tryptic peptides was used to identify unambiguously myocyte enhancer factor 2A, which had been recombinantly expressed in a bacterial cell line.  相似文献   

15.
A new method for optical pH and redox measurements with a commercially available water dispersion of polyaniline (PANI) nanoparticles (mean particle size, 46 nm) is presented. The pH measurements are based on the acid-base equilibrium of PANI and were carried out either by combining both the automated sequential injection analysis (SIA) and UV-visible spectrophotometric techniques or with a fiber-optic light guide. In the former case, the detection was done in continuous mode at lambda = 800 nm by using the SIA technique for transporting the sample to a flow-through cell, which was placed in the light path of the photometer. With the fiber-optic light guide, the detection was done in batch mode at lambda = 400 and 580 nm. In both methods, fresh pH reagent (PANI) solution was used in each measurement, thus overcoming the problem with hysteresis (memory effect), which is usually observed with PANI films. The PANI nanoparticles were characterized with UV-visible spectroscopy in pH buffer solutions between pH 2-12 and a protonation constant of logK(0.5H,L)(H(0.5)L) = 4.4 was calculated from these data. Fast pH measurements can be done between pH 6 and 10.5 depending on the measuring technique. It is possible to determine pH with an accuracy of 0.1 pH unit between pH 8 and 10.5 (RSD, 0.5-2%). Redox transitions typical for PANI films were also observed for water solutions of PANI nanoparticles in the presence of the hexacyanoferrate(II/III) and the iron(II/III) oxalate redox couples. The absorbance at lambda = 875 nm is linearly dependent on the logarithm of the concentration ratio (0.1-10) of the iron oxalate redox couple.  相似文献   

16.
Procedures for detection and quantitation of lysergic acid diethylamide (LSD), iso-LSD, and N-demethyl-LSD by capillary chromatography/tandem mass spectrometry (GC/MS/MS) are presented. Several methods for derivatization, sample introduction, and ionization, in combination with mass spectrometry/mass spectrometry (MS/MS), have been evaluated for overall ionization efficiency and product-ion sensitivity and specificity. Fragmentation pathways derived from low-energy collision-induced dissociation (CID) spectra of protonated LSD, and the protonated trimethylsllyl derivatives of LSD (LSD-TMS) and deuterium-labeled analogs of LSD, have been proposed. Principal dissociations primarily involve the amide and piperidine-ring moieties in which losses of CH3 radical, CH3NH2, CH3NCH2, diethylamine, diethylformamide, and N,N-diethylpropenamide from MH+ are observed. Positive-ion ammonia chemical ionization and subsequent MS/MS analysis of the protonated molecules (MH+) of the trimethylsilyl (TMS) derivatives of LSD, iso-LSD, and N-demethyl-LSD provide a high degree of specificity for identification of these compounds in urine or blood at low-pg/mL concentrations. Negative-ion chemical ionization and GC/MS/MS analysis of the molecular anion (M-) of the trifluoroacetyl (TFA) derivative is well suited for trace-level identification of N-demethyl-LSD, a metabolite of LSD.  相似文献   

17.
The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (<Hv 200) of the alloys displaying the B2-B19′ transformation. Solid solution hardening was an important factor for inducing the B2-R transformation in Ti–Ni–X (X = non-transition elements) alloys.  相似文献   

18.
As an alternative to the usual commercial reference and quasi-reference electrodes (QREs), we propose metal (Pt, stainless steel) coated with partially oxidized polypyrrole as a QRE. The electrode is easily fabricated by cyclic voltammetry (CV) with the metal electrode in an acetonitrile or CH2Cl2 solution of 10 mM pyrrole containing 0.1 M Bu4NPF6. These QREs were more stable than the widely used metal (e.g., Ag, Pt) wire QRE as demonstrated by testing in several aqueous and organic media, with the stability checked by CV with ferrocenemethanol as the redox species. The results obtained demonstrate good stability of these QREs over a period of 1 day and relatively reproducible potential in a given solvent and supporting electrolyte. This electrode has the advantage that it does not contaminate the test solution with ions or solvent from a usual liquid electrolyte (e.g., the KCl in an Ag/AgCl). It is also simple to fabricate very small electrodes for use in nanocells, e.g., in scanning tunneling and electrochemical microscopy.  相似文献   

19.
The electrochemiluminescence (ECL) of Ir(ppy)3 (ppy = 2-phenylpyridine) is reported in acetonitrile (CH3CN), mixed CH3CN/H20 (50:50 v/v), and aqueous (0.1 M KH2PO4) solutions with tri-n-propylamine as an oxidative-reductive coreactant. ECL efficiencies (phi(ecl), photons emitted per redox event) of 0.00092 in aqueous, 0.0044 in mixed, and 0.33 in CH3CN solutions for Ir(ppy)3 were obtained using Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) as a relative standard (phi(ecl) = 1). Photoluminescence (PL) efficiencies of 0.039, 0.050, and 0.069 were obtained in aqueous, mixed, and acetonitrile solutions, respectively, compared to Ru(bpy)3(2+) (phi(em) = 0.042). The ECL spectra were identical to photoluminescence spectra (lambda(max) approximately equal to 517 nm), indicating formation of the same metal-to-ligand (MLCT) excited states in both ECL and PL. The ECL is linear over several orders of magnitude in mixed and acetonitrile solution with theoretical detection limits (blank plus three times the standard deviation of the noise) of 1.23 nM in CH3CN and 0.23 microM in CH3CN/ H20 (50:50 v/v).  相似文献   

20.
The reversible formation of chemical bonds has potential for tuning multi‐electron redox reactions in emerging energy‐storage applications, such as lithium?sulfur batteries. The dissolution of polysulfide intermediates, however, results in severe shuttle effect and sluggish electrochemical kinetics. In this study, quinonoid imine is proposed to anchor polysulfides and to facilitate the formation of Li2S2/Li2S through the reversible chemical transition between protonated state (? NH+ ?) and deprotonated state (? N?). When serving as the sulfur host, the quinonoid imine‐doped graphene affords a very tiny shuttle current of 2.60 × 10?4 mA cm?2, a rapid redox reaction of polysulfide, and therefore improved sulfur utilization and enhanced rate performance. A high areal specific capacity of 3.72 mAh cm?2 is achieved at 5.50 mA cm?2 on the quinonoid imine‐doped graphene based electrode with a high sulfur loading of 3.3 mg cm?2. This strategy sheds a new light on the organic redox mediators for reversible modulation of electrochemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号