首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
作为当今世界增长最快的清洁能源,液化天然气(LNG)在储存过程中一旦发生泄漏,将会导致重大事故.采用沸腾液体扩散蒸气云爆炸(BLEVE)火球模型,模拟分析100 m3液化天然气储罐发生沸腾液体扩散蒸气云爆炸的事故后果,定量计算事故的伤害半径、财产损失半径、伤亡人数,为事故预防提供依据.  相似文献   

2.
浅谈石化装置建筑物的抗爆设计   总被引:2,自引:0,他引:2  
石油化工装置所涉及的物料大多是易燃易爆的,一旦泄漏可能发生蒸气云爆炸(Vapour CloudExplosion,VCE),从而可能对周围的建筑物造成破坏性影响.人员集中的建筑物一旦因爆炸超压发生倒塌,就可能造成群死群伤的重大安全事故.文章分析了蒸气云爆炸的机理和蒸气云爆炸冲击力计算的模型;仔细分析了影响蒸气云爆炸冲击力的关键因素.论述了蒸汽云爆炸对建筑物的影响及如何确定爆炸冲击力的设计取值.  相似文献   

3.
1.蒸气云爆炸机理 蒸气云爆炸是由于气体或易于挥发的液体燃料的大量快速泄漏,与周围空气混合形成覆盖很大范围的“预混云”,在某一有限制空间遇点火而导致的爆炸。轻烃储罐蒸气云爆炸大多数是由于储存轻烃的罐体在机械、化学或热作用下发生破坏而导致大量轻烃泄漏所引起的,罐体破裂是导致蒸气云爆炸发生的直接原因,造成罐体破裂主要有以下三种情况:  相似文献   

4.
水幕可以用于可燃气体在意外泄漏后的稀释,可以防止泄漏的可燃性气体处于爆炸极限,降低可燃气体泄漏的燃烧爆炸风险。采用液氮代替液化天然气(LNG),通过试验模拟研究了水幕架设距离、水幕架设高度、水幕形状及环境风速对水幕防护效果的影响。研究结果表明,向下喷射水幕具有的动能能与周围空气形成向上气流将LNG蒸气云团抬起,改变LNG蒸气云团的扩散路径。水幕相对泄漏源的架设距离不宜过小,约0.35 m的水幕距离可产生明显的稀释效果。环境风速超过1 m/s时会在水幕内部造成湍流,加快蒸气云向上扩散,抑制蒸气云沿地面扩散。研究结果对LNG泄漏防护水幕装置的设计和使用有一定的参考意义。  相似文献   

5.
针对山东LNG项目16万m3全包容LNG储罐的特点,分析了储罐发生泄漏后形成喷射火、闪火、池火、蒸气云爆炸和沸腾液体扩展蒸气爆炸的可能性,并利用PHAST软件模拟了特定条件下泄漏LNG的扩散过程,定量分析了火灾的热辐射影响范围和爆炸冲击波的超压影响范围,对比双容罐池火热辐射范围,确定了储罐区与周边设施的安全间距及消防措施。  相似文献   

6.
LNG接收站的储运介质主要是液化天然气,由于其具有易泄漏、易挥发扩散等特性,泄漏形成的可燃蒸气云团有可能引发火灾爆炸等严重后果,分析并预测接收站LNG泄漏事故产生的灾害效应,可以为LNG接收站选址、布局设计和事故灾害预防提供参考。为此,利用FLACS软件,根据国内某大型LNG接收站的现场布局建立LNG泄漏扩散三维预测模型,采用相对偏差率对不同风速、风向和围堰高度条件下的LNG泄漏扩散行为进行分析与评价,预测了接收站LNG泄漏事故产生的灾害效应。研究结果表明:①在300 s的扩散时间内,LNG泄漏扩散呈现重力沉降特点;②定量分析了泄漏点位置对国内某拥有5个储罐的大型接收站LNG泄漏与扩散效应的影响,确定3号储罐泄漏造成的灾害效应影响最大;③围堰高度对LNG气云爆炸灾害效应的影响最大,其次为风速和风向,而风向对LNG气云窒息灾害效应的影响最大,其次为围堰高度和风速;④发生泄漏事故意外点火爆炸,热辐射死亡最大半径为170.1 m,三度烧伤最大半径为213.7 m,二度烧伤最大半径为261.7 m,一度烧伤最大半径为370.1 m,其气云团覆盖的范围基本是死亡区,人员重伤死亡。  相似文献   

7.
针对山东液化烃综合利用项目场地有限,MTBE装置与中心控制室邻近布置的特点,对MTBE装置醚化反应器进料管线发生泄漏事故进行分析。运用CASST-QRA软件模拟计算碳四泄漏引发蒸气云爆炸的破坏范围,并结合挪威船级社软件PHAST中的Baker-strehlow模型定量计算蒸气云爆炸冲击波、冲量平面与立面分布,分析对周边重要建筑——中心控制室的影响,依据计算结果指导中心控制室的抗爆设计强度。工程设计阶段运用国内外先进软件进行事故模拟计算,不但可以指导总平面布置,而且还为后期施工图设计提供了基础数据,有助于保障新建项目的本质安全。  相似文献   

8.
分析了雷击引起汽车加氢站储氢压力容器的危险性,运用喷射火模型和蒸气云爆炸模型对储氢压力容器遭受雷击泄漏氢气引起火灾爆炸事故后果进行了模拟计算和分析。结果表明:储氢压力容器发生喷射火时致死区、重伤区、轻伤区、危险区分别为1.585,1.941,2.745,4.853 m;发生爆炸的死亡、重伤、轻伤半径较大,分别为3.24,31.16,48.43 m。从伤害半径数据可以推断雷击储氢压力容器均可造成严重的事故后果。加氢站在日常运营中需要保持防雷装置的良好工作状态,加强重大危险源的风险管控。  相似文献   

9.
LNG属于易燃易爆的危险性物品,一旦发生泄漏,可能引发喷射火、池火、蒸气云爆炸、闪火等危害。利用挪威船级社研制的PHAST软件,选取具有代表性的泄漏工况对LNG泄漏及可能引发的事故进行分析计算。利用GIS显示扩散气体、喷射火及池火热辐射、蒸气云爆炸超压的影响区域,并提出风险防范对策措施,为消防力量的布置以及应急预案的制订等提供依据。  相似文献   

10.
为了研究海底输气管道发生泄漏时压力信号的传播特点,利用Pipeline studio模拟软件进行了海底输气管道和陆地输气管道在相同输气压力和泄漏孔径下发生泄漏时泄漏点压力信号变化的对比,同时进行了海底输气管道在不同工况下泄漏点压力变化特性的模拟研究。结果表明:输气压力和泄漏孔径一定时,外界压力越大,泄漏点压力衰减后越快速趋于稳定,且稳定时压力越小;输气压力一定时,一定范围内,泄漏孔径越大,泄漏点压降速率越大,衰减后达到稳定所需时间越长,稳定时压力越小;输气压力超过一定范围则相反,且泄漏孔径过大会造成泄漏点压力无规则波动。泄漏孔径与管径的比值大小对泄漏点压力衰减后达到稳定时所需要的时间以及稳定后的压力具有重要影响,根据其比值可以大致确定压力传感器的最佳安装间距,这对于提高海底管道检测准确度和降低检测成本具有一定的借鉴意义。  相似文献   

11.
目的 隧道内埋地燃气管道发生泄漏后燃气易积聚达到最低爆炸极限浓度,产生爆炸危险,需要对管道泄漏后在土壤和空气环境中连续扩散的问题进行研究。方法 采用理论分析和数值模拟的方法,对土壤和空气区域中的燃气浓度进行同时连续的监测。结果 (1)小孔泄漏发生后10 min、20 min、30 min、40 min时刻甲烷体积分数值为0.05的等值线在土壤内的最大扩散半径分别为0.90 m、1.15 m、1.25 m和1.30 m,甲烷在土壤内的最大扩散半径在10~15 m之间;(2)泄漏发生约5 min后土壤内各点处甲烷浓度趋于稳定;(3)空气区域中甲烷体积分数随时间的变化分为快速增长、缓慢增长和稳定3个阶段,泄漏发生60 min后隧道顶部6 m长的区域处于爆炸极限浓度范围内。结论 隧道内埋地燃气管道发生泄漏后,燃气在土壤内扩散半径不超过15 m,相对封闭的隧道环境使得隧道顶部6 m区域处于爆炸极限浓度范围内,需加以防控。  相似文献   

12.
在分析液化石油气的危险特性和发生蒸气云爆炸事故特点的基础上,用两种常用的蒸气云爆炸后果模拟方法TNT当量法和TNO多能法对液化石油气储罐发生蒸气云爆炸的后果进行计算,分别得到死亡、重伤、轻伤和财产损失半径.对两种方法的计算过程和结果进行了分析和讨论,并给出了罐区设计时的建议.  相似文献   

13.
以某企业液化气汽车装卸场站为例,针对液化气装卸区危险特性,采用计算流体动力学(CFD)模拟技术,建立全尺寸三维模型,对装卸栈台发生液化气泄漏、蒸气云在附近停车场集聚爆炸后的场景进行模拟计算,评估爆炸对周围构筑物和生产设施的影响,同时研究停车场停车数量和爆炸超压的关系。结果表明,在一定距离内,非防爆的控制室等构筑物会受到爆炸冲击发生损毁倒塌,威胁控制室内人员安全;附近停车区车辆数量与爆炸超压呈线性关系,车辆越多,产生的危害越大。  相似文献   

14.
目的 核实小型移动式LNG橇装回收站内集中控制室、装车区值班室与LNG设施遵循现有标准规定的防火间距是否满足生产实际要求。方法 利用挪威船级社研制的PHAST软件,选取具有代表性的泄漏工况,对LNG泄漏可能引发的池火热辐射、喷射火热辐射、蒸气云爆炸及蒸气云扩散影响距离进行模拟计算。结果 得出了LNG设施在不同泄漏孔径情况下引发不同事故后果的影响距离。结论 基于工艺管道泄漏概率统计,给出了小型移动式LNG橇装回收站内集中控制室、装车区值班室与LNG设施防火间距的建议。  相似文献   

15.
阐述了障碍物对开敞空间蒸气云爆炸威力的加强机理,概括了气云内部放置障碍物的开敞空间蒸气云爆炸(UVCEs)的实验、经验方法和理论研究情况,并分析了障碍物和火焰的相互作用机理,火焰加速机理是研究障碍物对开敞空间蒸气云爆炸威力加强作用的关键问题。  相似文献   

16.
地面液化烃储罐大都集中存放且储量大,一旦发生泄漏爆炸事故,将会对周围人员的生命安全造成巨大威胁,同时造成重大财产损失,因此分析爆炸事故原因,对减少事故和经济损失具有重要意义。地面液化烃储罐事故主要包括储罐泄漏和火灾爆炸,其中发生事故频率最多的是储罐泄漏,泄漏主要发生在储罐的罐体、管道和安全附件等部位;火灾爆炸事故大部分是因为液化石油气泄漏时被点燃、遇火源发生闪燃或蒸气爆炸。泄漏处置方案包括关阀止漏、稀释驱散、注水排险、倒罐输转和应急点燃。火灾扑救措施包括强力冷却控制、放空排险、安全控烧、水流切封和干粉灭火等。  相似文献   

17.
以某企业液化气汽车装卸场站为例,针对液化气装卸区危险特性,采用计算流体动力学(CFD)模拟技术,建立全尺寸三维模型,对装卸栈台发生液化气泄漏、蒸气云在附近停车场集聚爆炸后的场景进行模拟计算,评估爆炸对周围构筑物和生产设施的影响,同时研究停车场停车数量和爆炸超压的关系。结果表明,在一定距离内,非防爆的控制室等构筑物会受到爆炸冲击发生损毁倒塌,威胁控制室内人员安全;附近停车区车辆数量与爆炸超压呈线性关系,车辆越多,产生的危害越大。  相似文献   

18.
 以高斯分布气云为例,研究了非均匀分布气云爆炸的威力与机理,并与相同泄漏量的均匀分布可燃气云爆炸进行了对比分析。结果表明:当高斯分布可燃气云爆炸时,由于其可燃气体浓度偏离最危险浓度,燃烧速率降低,火焰维持不了自加速运动,对火焰阵面前的气体扰动较小,不会产生较强的冲击波。泄漏量为2228.2m3的乙炔形成的2种高斯分布气云爆炸时,最高超压分别为4.3、1.8kPa,最多具有使玻璃窗破碎的破坏能力。当同样泄漏量的乙炔形成半径20m、乙炔体积分数为13.3%的均匀分布气云爆炸时,可产生42.3kPa的最大超压,具有使砖墙倒塌的破坏能力。因此,在工业现场发生可燃气体泄漏时,首要任务是避免泄漏气体形成混合良好的均匀可燃气云。  相似文献   

19.
风险评价是指对系统发生事故的危险性进行定性或定量分析,评价系统发生危险的可能性及其严重程度,其对原油管道的安全输送具有重大意义。基于云模型理论对管道风险因素评分进行修正,建立了埋地原油管道的风险计算模型,从而计算出孔口泄漏及断裂泄漏两种不同泄漏情况下一定时间内的原油泄漏量,得到了不同泄漏孔径在30、60、120 s暴露时间下的热辐射影响范围。通过对国内某条埋地原油管道实例计算表明:对于100、610 mm泄漏孔径,泄漏速率分别为460、1 685 kg/s时,10 min两者泄漏量可达到2.76×10~5、1.01×10~6kg;随着暴露时间的延长,池火灾热辐射影响范围越来越大,暴露时间为120 s时,两种泄漏孔径的死亡区域半径为40.5、69.7 m,影响区域距离可达175.8、303.6 m;该危险管段的个人风险值在可接受范围内。  相似文献   

20.
液化天然气(LNG)正在越来越大量和越来越广泛地被使用,这导致了LNG在生产、运输和使用等环节发生火灾和爆炸的潜在危险性增加。目前,喷射水幕被广泛认为是最有效且最具前景应用的控制和降低LNG泄漏蒸气云危害的技术。LNG的泄漏危害、泄漏特征、泄漏检测以及利用水幕紧急处理事故等被介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号