首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
本文设计了用于14bit逐次逼近型模数转换器(SAR ADC)的DAC电路。针对该DAC,介绍一种全差分分段电容阵列结构以缩小DAC的版图面积;高二位权电容采用热码控制,用以改善高位电容在转换时跳变的尖峰以及DAC的单调性;对电容阵列采用数字校准技术,减小电容阵列存在的失配,以提高SAR ADC精度。校准前,SAR ADC的INL达到10LSB,DNL达到4LSB;与校准前相比,校准后,INL〈0.5LSB,DNL〈0.6LSB。仿真结果表明,本DAC设计极大改善SAR ADC的性能,已达到设计要求。  相似文献   

2.
采用Global Foundries 0.18 μm工艺,设计了一种适用于12位SAR ADC的低功耗数模转换器。分析了提高分辨率对传统DAC结构功耗、面积的影响。通过采用电容串联与set-down开关策略,使DAC总电容值仅为传统结构的1/4,开关功耗降低为传统结构的9.4%。版图设计以中心对称为原则,低位电容靠近开关电路,降低了工艺、寄生参数对电容阵列的影响。仿真结果表明,DNL=-0.05~+0.45 LSB,INL=-0.3~+0.5 LSB,符合12位DAC的设计要求。  相似文献   

3.
在加速度计中,需要数模转换器(DAC)提供一个稳定的偏压来消除重力加速度,要求DAC具有高精度、单调性和小面积等特性。为了解决传统电阻型DAC存在的大面积和传统电容DAC中存在的非单调性等问题,提出了一种电容电阻混合型DAC结构,并设计了一个10位的DAC,用于提供稳定偏压。提出一种新的电容共质心的版图布局,提高了DAC的精度。该DAC在0.5μm CMOS工艺上得以验证实现,微分非线性误差(DNL)最大为0.50LSB,积分非线性误差(INL)最大为0.82LSB,在5V和-5V的双电源供电条件下,芯片功耗为16mW,完全满足了工程需求。  相似文献   

4.
针对带数字校准功能的逐次逼近模/数转换器(SAR ADC),提出将主DAC、校准DAC和基准电压产生电路的电阻串进行复用,从而显著减少了芯片面积,降低了功耗。相比6+6两段电容结构DAC,采用电阻电容混合结构的主DAC和校准DAC节约了37%的版图面积。在0.18μm CMOS工艺下,通过Hspice仿真,SAR ADC的DNL和INL均小于0.4LSB,SNR为75dB。系统正常工作时,总功耗为3.1mW,比不采用电阻串复用的结构减少0.9mW。  相似文献   

5.
张帅  张润曦  石春琦 《微电子学》2020,50(4):465-469
采用55 nm CMOS工艺,设计了一个12位电流舵DAC。根据Matlab建模结果,确定电流舵DAC采用“6+3+3”的分段结构,这种分段结构使得版图面积和微分非线性(DNL)均较小;共源共栅电流源有效提高了电流源的输出阻抗;开关结构中的MOS电容减小了信号馈通效应的影响;与电流源栅端相连的电容稳定了电流源的偏置电压。基于以上特点,在未采用静态和动态校准技术的情况下,电流舵DAC能得到较好的性能指标。后仿真结果表明,采样率为200 MS/s、输入信号频率为1.07 MHz时,在25 ℃、TT工艺角下,该DAC的无杂散动态范围(SFDR)为78.62 dB,DNL为0.5 LSB,积分非线性(INL)为0.8 LSB。该电流舵DAC的电源电压为1.2 V,功耗为18.43 mW,FOM为13.22 fJ。  相似文献   

6.
保证DAC中元器件的精度、减小DNL误差是提高SAR ADC性能的关键。通过对SAR ADC内部DAC的结构进行综合分析,针对传统的C-R混合式结构中的集总电容阵列进行了优化设计。电容阵列由相同的非集总的单位电容组成,并通过数字逻辑的控制来实现对单位电容连接点的选择。验证结果证明设计有效,ENOB、SFDR和SINAD等参数都得到明显的提高,保证了SARADC的单调性,实现了低DNL的SAR型模数转换器的设计。  相似文献   

7.
徐亮  代志双  谢亮  金湘亮 《微电子学》2019,49(3):320-325
设计了一种12位1 MS/s单端结构的自校准逐次逼近型模数转换器(SAR ADC)。采用串联三段式7位校准DAC阵列结构来校准高6位误差电压,减小了面积,扩大了校准范围。将校准DAC的初始态接为中间态,简化了校准逻辑控制过程。采用“双寄存器”预判的方式,提高了回补校准码的效率。在电源电压为3.3 V、转换速率为1 MS/s的条件下,进行了仿真验证。结果表明,该SAR ADC校准后,SNDR从校准前的49.2 dB提升到71 dB,DNL、INL分别从校准前的-1 LSB /+21.250 LSB、-17.398 LSB /+10.152 LSB减小到-0.25 LSB /+0.5 LSB、-1.048 LSB /+0.792 LSB。  相似文献   

8.
提出了一种低功耗连续时间多比特Δ-Σ调制器架构。该架构充分利用了Δ-Σ结构高分辨率和连续时间结构高速度的特点。将量化器的输出分为最高有效位(MSB)和最低有效位(LSB),LSB被反馈到量化器和DAC的输入,提高了系统的分辨率和线性度,降低了系统的硬件复杂度。除此之外,积分器的输出摆幅也显著减小,大大降低了运算放大器对带宽和增益的要求。使用SAR量化器中的开关电容DAC阵列进行环路延迟补偿,进一步提高了环路滤波器功率效率。通过仿真分析,验证了提出架构的正确性。  相似文献   

9.
设计了一种适用于嵌入式应用的10位10 MS/s逐次逼近模拟数字转换器。数字模拟转换器采用改进的分段电容阵列结构,有效地减小了电容面积和开关切换时的功耗。电容阵列采用中心对称技术,提高了电容匹配。使用采样时钟为主时钟和异步工作方式,避免了高频时钟的使用,同时优化控制逻辑来提高转换速度。电平转换模块将低电压数字逻辑信号提升为高电平模拟信号。采用UMC 0.11μm 1P6MCMOS工艺验证。当采样频率为10 MS/s、输入频率为100kHz左右正弦信号时,信号噪声畸变比(SNDR)为59.99dB,有效分辨率(ENOB)为9.67位。测得最大微分非线性(DNL)为0.48LSB,最大积分非线性(INL)为0.61LSB。  相似文献   

10.
采用0.5μm BCD工艺,设计了一种16位分段式电阻型高精度DAC。根据集成电路工艺中电阻的一般失配特性,确定电阻型DAC采用“4+12”的分段结构,分别为高位温度计码结构和低位二进制码结构。整个电路中的电阻类型均采用高阻型电阻,减小了DAC开关结构中的失配,极大降低了整体功耗。电路结构紧凑,整体面积小,仅有2.397 6 mm2。结合后仿真结果,对版图进行合理调整,使电路具有较低的微分非线性(DNL),之后采用校正结构,进一步降低DNL。电路测试结果表明,输入数字信号为10 kHz的正弦波时,DAC的无杂散动态范围(SFDR)为57.72 dB,DNL为0.5 LSB,积分非线性(INL)为1 LSB,功耗为1.5 mW。  相似文献   

11.
A 12-b, 10-MHz, 250-mW, four-stage analog-to-digital converter (ADC) was implemented using a 0.8-μm p-well CMOS technology. The ADC based on a digitally calibrated multiplying digital-to-analog converter (MDAC) selectively employs a binary-weighted capacitor array in the front-end stage and a unit-capacitor array in the remaining back-end stages to obtain 12 b level linearity while maintaining high yield. All the analog and digital circuit functional blocks are fully integrated on a single chip, which occupies a die area of 15 mm2 (4.2 mm×3.6 mm). Measured differential nonlinearity (DNL) and integral nonlinearity (INL) of the prototype are less than ±0.8 LSB and ±1.8 LSB, respectively  相似文献   

12.
宋健  张勇  李婷 《微电子学》2017,47(6):760-764
基于XFAB工艺参数,设计了一种不受电容电压系数影响的高速高精度SAR ADC。在理论上定性分析了电容电压系数对高速高精度SAR ADC的影响,并使用Matlab进行定量分析。分析结果表明,1阶与2阶电容电压系数对ADC性能的影响具有不同的特点。针对1阶电容电压系数,使用改进的分裂电容结构进行消除;针对2阶电容电压系数,使用分段数字补偿来进行校正。校正完成以后,电容电压系数引起的非线性误差可以从±11.7 LSB降到±0.5 LSB以下,无杂散动态范围可以提高10 dB以上。  相似文献   

13.
A 15-b 1-Msample/s digitally self-calibrated pipeline ADC   总被引:2,自引:0,他引:2  
A 15-b 1-Msample/s digitally self-calibrated pipeline analog-to-digital converter (ADC) is presented. A radix 1.93, 1 b per stage design is employed. The digital self-calibration accounts for capacitor mismatch, comparator offset, charge injection, finite op-amp gain, and capacitor nonlinearity contributing to DNL. A THD of -90 dB was measured with a 9.8756-kHz sine-wave input. The DNL was measured to be within ±0.25 LSB at 15 b, and the INL was measured to be within ±1.25 LSB at 15 b. The die area is 9.3 mm×8.3 mm and operates on ±4-V power supply with 1.8-W power dissipation. The ADC is fabricated in an 11-V, 4-GHz, 2.4-μm BiCMOS process  相似文献   

14.
蔺增金  杨海钢   《电子器件》2007,30(3):733-737
首先根据生化微传感SOC的应用场合和微传感器的特点,选定CR SARADC作为片内嵌入类型;基于SOC的标准CMOS工艺实现和低功耗的设计目标,分别进行了电容阵列、比较器、开关阵列和SAR控制逻辑等组成单元全定制原理图、版图设计,实现了片内嵌入10位ADC的整体芯片.流片实测结果DNL、INL最大值分别为+/1.0LSB、+/-1.5LSB,功耗仅为4.62mW,满足生化微传感SOC数据转换的片内嵌入要求.  相似文献   

15.
A digital self-calibration implementation with discontinuity-error and gain-error corrections for a pipeline analog-to-digital converter (ADC) is presented. In the proposed calibration method, the error owing to each reference unit capacitor of the multiplying D/A converter is measured separately using a calibration capacitor and an enhanced resolution back-end pipeline ADC acting as an error quantizer. The offset and finite open loop DC-gain of the operational amplifier and capacitor mismatches, the reference voltage mismatch can all be calibrated. The calibration can be achieved by that only used addition and subtraction. Hence, it needs low power and area consuming. A prototype ADC with the proposed calibration was fabricated on a 0.5 μm double-poly triple-metal CMOS process. The power consumption and area of the calibration circuit are only 10.1 mW and 1.05 mm2, respectively. At a sampling rate of 30 MS/s, the calibration improves the DNL and INL from 2.59 LSB and 14.98 LSB to 0.72 LSB and 1.82 LSB, respectively. For a 1.25 MHz sinusoidal signal, the calibration improves the signal-to-noise-distortion ratio and spurious-free dynamic range from 43.1 dB and 52.1 dB to 75.51 dB and 83.61 dB, respectively. The 12.25 effective number of bits at 30 MS/s ADC consumes a total power of 136 mW.  相似文献   

16.
《Microelectronics Journal》2015,46(10):928-934
This paper presents a capacitor based Digital to Analog Converter architecture, which gives comparable performance with the conventional architecture with approximately half the total capacitance. The proposed architecture reduces the area and power dissipation in comparison with the conventional scheme. Further to these advantages, the proposed DAC architecture does not demand an additional reference voltage or an additional switching circuit. Closed form formulas to estimate the standard deviation of INL, DNL and the power consumption are derived. A comparison is also made between the standard architectures and the proposed architecture for the same unit capacitor, in addition to analyzing the capacitor parasitics and mismatches. These analytical comparisons are validated by simulating the proposed architecture and all the other conventional architectures for 10 bits with UMC 180 nm CMOS technology.  相似文献   

17.
A 10-bit CMOS cyclic D/A converter based on an improved Johnson counter and a capacitor swapping technique is described. In order to reduce the capacitor mismatching errors, we propose that two capacitors are alternately swapped depending on the input data. Further, a half differential architecture to reduce offset errors and an improved Johnson counter are also discussed. With a 0.35 µm Samsung CMOS technology, the measured SFDR is about 65 dB, when the input frequency is 1 MHz at a clock frequency of 2 MHz. The power consumption is only 240 µW at 3.3 V power supply. The measured INL and DNL are within ±0.7 and ±0.7 LSB, respectively.  相似文献   

18.
为了降低触摸屏控制电路的功耗,本文提出了一种低功耗逐次逼近型模数转换器(SAR ADC)。对该SAR ADC所采用的电容阵列数模转换器(DAC)、比较器和逐次逼近寄存器等进行了研究与设计。首先,基于两级并串耦合电容设计电容阵列DAC结构,并设计配套的参考电平转换方案。接着,设计两级全动态比较器,并分析比较器的工作原理。然后,基于动态逻辑设计低功耗低误码逐次逼近寄存器。最后,基于180nm CMOS工艺,在1V电源电压,200kHz采样频率和96.243kHz输入频率条件下对SAR ADC进行了仿真。仿真结果表明:积分非线性误差(INL)和微分非线性误差(DNL)分别为0.222/-0.203LSB和0.231/-0.184LSB,无杂散动态范围(SFDR)为76.56dB,信噪失真比(SNDR)为61.50dB,有效位(ENOB)为9.92位,功耗为0.464μW,品质因素(FOM)值为2.4fJ/Conv.-step。本文设计的低功耗SAR ADC满足触摸屏控制电路应用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号