共查询到19条相似文献,搜索用时 62 毫秒
1.
功率放大器(Power Amplifier, PA)是射频前端重要的模块,本文基于SMIC 55 nm RF CMOS 工艺,设计了一款60 GHz 两级差分功率放大器。针对毫米波频段下,硅基CMOS晶体管栅漏电容(Cgd)严重影响放大器的增益和稳定性的问题,采用交叉耦合电容中和技术抵消Cgd影响。通过优化级间匹配网络和有源器件参数,提高了功率放大器的输出功率,增益和效率。后仿结果显示,在1.2V的供电电压下,工作在60 GHz的功率放大器饱和输出功率为11.3 dBm,功率增益为16.2 dB,功率附加效率为17.0%,功耗为62 mW。芯片面积380×570 um2 。 相似文献
2.
3.
从晶体管器件模型出发,对两种常用的LNA电路结构进行了分析,提出了一种60 GHz LNA电路结构.该电路使用级间电感匹配的方式,可以有效地提高电路的增益并降低噪声;同时,结合先进的生产工艺,对电路的匹配网络进行了设计和优化,充分利用直流偏置网络,简化输入输出匹配网络;使用最简单的电路结构,获得了较高的增益指标和较低的功耗. 相似文献
4.
基于TSMC 0.18μm CMOS工艺,设计了一种低噪声、高线性度的差分CMOS低噪声放大器。与传统的共源共栅结构相比,该电路在共源晶体管的栅源极并入一个电容以降低共源极的噪声;并在共栅极上引入一对交叉耦合电容和电感,以消除共栅极的噪声并提高电路的线性度。仿真结果表明,在2.4GHz的工作频率下,该电路的噪声系数仅有1.29 dB,该电路能够提供17dB的正向增益,良好的输入输出匹配,该放大器的输入三阶交调点为0.76dBm,功耗小于10mW。 相似文献
5.
6.
为实现性能更优的超宽带(UWB)射频前端低噪声放大器(LNA),本文提出了一种通用的基于CMOS工艺的超宽带LNA优化设计方法.基于源端电感负反馈的LNA电路模型,本文提出利用最优化的数学方法分别确定晶体管尺寸、输入匹配网络和负载网络各元件参数的方法,实现了较好的输入阻抗匹配,达到了较高的增益、较好的增益平坦度以及优秀的噪声系数,并具有较低的功耗;本设计方法所用无源元件不但适宜CMOS集成,而且对工艺偏差具有一定的忍耐力.仿真结果说明用上述方法设计的超宽带LNA在工作频带内能够达到预期的各项性能要求. 相似文献
7.
设计了一种基于65 nm CMOS工艺的60 GHz功率放大器。采用共源共栅结构与电容中和共源级结构相结合的方式来提高功率放大器的增益,并采用两路差分结构来提高输出功率。采用片上变压器作为输入/输出匹配及级间匹配,以减小芯片的面积,从而降低成本。采用Cadence、ADS和Momentum等软件进行联合仿真。后仿真结果表明,在工作频段为60 GHz时,最大小信号增益为26 dB,最大功率附加效率为18.6%,饱和输出功率为15.2 dBm。该功率放大器具有高增益、高效率、低成本等优点。 相似文献
8.
以设计低电压LNA电路为目的,提出了一种采用关态MOSFET中和共源放大器输入级栅漏寄生电容Cgd的CMOS差分低噪声放大器结构.基于该技术,采用0.35μmCMOS工艺设计了一种工作在5.8GHz的低噪声放大器.结果表明,在考虑了各种寄生效应的情况下,该低噪声放大器可以在0.75V的电源电压下工作,其功耗仅为2.45mW.在5.8GHz工作频率下:该放大器的噪声系数为2.9dB,正向增益S21为5.8dB,反向隔离度S12为-30dB,S11为-13.5dB. 相似文献
9.
10.
11.
S. Toofan A.R. Rahmati A. Abrishamifar G. Roientan Lahiji 《Microelectronics Journal》2007,38(12):1150-1155
In this paper, we present the design of a fully integrated CMOS low noise amplifier (LNA) with on-chip spiral inductors in 0.18 μm CMOS technology for 2.4 GHz frequency range. Using cascode configuration, lower power consumption with higher voltage and power gain are achieved. In this configuration, we managed to have a good trade off among low noise, high gain, and stability. Using common-gate (CG) configuration, we reduced the parasitic effects of Cgd and therefore alleviated the stability and linearity of the amplifier. This configuration provides more reverse isolation that is also important in LNA design. The LNA presented here offers a good noise performance. Complete simulation analysis of the circuit results in center frequency of 2.4 GHz, with 37.6 dB voltage gain, 2.3 dB noise figure (NF), 50 Ω input impedance, 450 MHz 3 dB power bandwidth, 11.2 dB power gain (S21), high reverse isolation (S12)<−60 dB, while dissipating 2.7 mW at 1.8 V power supply. 相似文献
12.
13.
文中给出了一个应用于超宽带射频接收机中的全集成低噪声放大器,该低噪声放大器采用了电阻并联负反馈与源极退化电感技术的结合,为全差分结构,在Jazz0.18μm RF CMOS工艺下实现,芯片面积为1.08mm2,射频端ESD抗击穿电压为1.4kV。测试结果表明,在1.8V电源电压下,该LNA的工作频带为3.1~4.7GHz,功耗为14.9mW,噪声系数(NF)为1.91~3.24dB,输入三阶交调量(IIP3)为-8dBm。 相似文献
14.
设计了一种完全可以单片集成的低功耗高增益CMOS低噪声放大器(LNA).所有电感都采用片上螺旋电感,并实现了片上50 Ω的输入阻抗匹配.文中设计的放大器采用TSMC0.18 μmCMOS工艺,用HSPICE模拟软件对其进行了仿真,并进行了流片测试.结果表明,所设计的低噪声放大器结构简单,极限尺寸为0.18 μm,当中心频率fo为2.4 GHz、电源电压VDD为1.8 V时其功率增益S21为16.5 dB,但功耗Pd只有2.9 mW,噪声系数NF为2.4 dB,反向隔离度S12为-58 dB.由此验证了所设计的CMOS RF放大器可以在满足低噪声、低功耗、高增益的前提下向100 nm级的研发方向发展. 相似文献
15.
《Microelectronics Journal》2015,46(1):103-110
In order to get a wideband and flat gain, a resistive-feedback LNA using a gate inductor to extend bandwidth is proposed in this paper. This LNA is based on an improved resistive-feedback topology with a source follower feedback to match input. A relative small inductor is connected in series to transistor׳s gate, which boosts transistor׳s effective transconductance, compensates gain loss and then leads the proposed LNA with a flat gain and wider bandwidth. Moreover, the LNA׳s noise is partially inhibited by the gate inductor, especially at high frequency. Realized in standard 65-nm CMOS process, this LNA dissipates 12 mW from a 1.5-V supply while its core area is 0.076 mm2. Across 0.4–10.6 GHz band, the proposed LNA provides 9.5±0.9 dB power gain (S21), better than −11-dB input matching, 3.5-dB minimum noise figure, and higher than −17.2-dBm P1 dB. 相似文献
16.
分析了一种射频COMS共源-共栅低噪声放大器的设计电路,采用TSMC 90nm低功耗工艺实现。仿真结果表明:在5.6GHz工作频率,电压增益约为18.5dB;噪声系数为1.78dB;增益1dB压缩点为-21.72dBm;输入参考三阶交调点为-11.75dBm。在1.2V直流电压下测得的功耗约为25mW。 相似文献
17.
设计了一款用于中国60 GHz标准频段的射频接收前端电路。该射频接收前端采用直接变频结构,将59~64 GHz的微波信号下变频至5~10 GHz的中频信号。射频前端包括一个四级低噪声放大器和电流注入式的吉尔伯特单平衡混频器。LNA设计中考虑了ESD的静电释放路径。后仿真表明,射频接收前端的转换增益为13.5~17.5 dB,双边带噪声因子为6.4~7.8 dB,输入1 dB压缩点为-23 dBm。电路在1.2 V电源电压下功耗仅为38.4 mW。该射频接收前端电路采用IBM 90 nm CMOS工艺设计,芯片面积为0.65 mm2。 相似文献
18.
设计了一个共源-共源共栅的两级低噪声放大器,并且在两级之间采用了串联谐振回路来提高电路的性能.该电路采用TSMC 0.18μm CMOS工艺,电源电压为1.8 V.仿真结果显示,在2.45 GHz的中心频率上,该电路能够提供26.92 dB的正向增益及很好的输入输出匹配,噪声系数为0.88 dB,功耗为14.49 mW,1dB压缩点为-9dBm. 相似文献
19.
《Microelectronics Journal》2014,45(11):1463-1469
A low-power low-noise amplifier (LNA) utilized a resistive inverter configuration feedback amplifier to achieve the broadband input matching purposes. To achieve low power consumption and high gain, the proposed LNA utilizes a current-reused technique and a splitting-load inductive peaking technique of a resistive-feedback inverter for input matching. Two wideband LNAs are implemented by TSMC 0.18 μm CMOS technology. The first LNA operates at 2–6 GHz. The minimum noise figure is 3.6 dB. The amplifier provides a maximum gain (S21) of 18.5 dB while drawing 10.3 mW from a 1.5-V supply. This chip area is 1.028×0.921 mm2. The second LNA operates at 3.1–10.6 GHz. By using self-forward body bias, it can reduce supply voltage as well as save bias current. The minimum noise figure is 4.8 dB. The amplifier provides a maximum gain (S21) of 17.8 dB while drawing 9.67 mW from a 1.2-V supply. This chip area is 1.274×0.771 mm2. 相似文献