首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用化学氧化原位聚合法制备聚苯胺纳米棒(PANI)、PANI和氮掺杂碳纳米纤维(NCNFs)的复合材料(PANI/NCNFs)。扫描电镜(SEM)结果表明, PANI纳米棒均匀生长在NCNFs的表面,制备的复合材料直径约为150~200 nm。恒流充放电结果表明,当放电电流密度为0.2 A/g时, PANI/NCNFs-1、PANI/NCNFs-2和PANI/NCNFs-3(苯胺浓度分别为0.256、0.337、0.160 mol/L制备)可以获得877、693和563 F/g的比电容。PANI/NCNFs复合材料具有优异的比电容和倍率性能,该材料在电化学储能器件领域具有广阔的应用前景。  相似文献   

2.
通过简单的方法将煅烧过的金属有机框架(MOF)与聚苯胺(PANI)复合,形成了简单的MOF/PANI复合材料.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅立叶转换红外线光谱(FTIR)对其进行了表征,并用循环伏安法(CV)对其电化学性能进行了测试.结果证明了MOF/PANI的比容量在电流密度为1 A/g下可高达477 F/g.  相似文献   

3.
利用聚苯胺和醋酸纤维素为原料,按一定的配比配制成溶液,通过静电纺丝法修饰于铂电极表面,制备成聚苯胺/醋酸纤维素(PANI/CA)纳米纤维薄膜修饰电极(PANI/CA/Pt).采用各种电化学方法和扫描电镜(SEM)对PANI/CA纳米纤维薄膜进行了表征,并且用交流阻抗法分析了其在电极表面的动力学过程.结果表明PANI/CA纳米纤维薄膜电化学性质稳定,该修饰电极在H2SO4溶液中呈现出聚苯胺的特征峰,其SEM图显示PANI/CA纳米纤维在电极表面呈网状不规则立体分布,为构建生物传感器提供了一个良好的界面.以此为基础制备的葡萄糖氧化酶/聚苯胺/醋酸纤维素(GOx/PANI/CA/Pt)传感器对葡萄糖有良好的响应,有望制成物美价廉的生物传感器.利用静电纺丝法制备纳米纤维薄膜修饰电极并用来固定酶等蛋白质类高分子物质是一种新的可行性的方法.  相似文献   

4.
通过原位聚合非二次掺杂制备了高导电性聚苯胺/氧化石墨烯复合材料。采用盐酸为掺杂酸,研究了聚苯胺/氧化石墨烯的微观形貌;探讨了盐酸浓度及氧化石墨烯(GO)用量对反应过程和复合材料导电性的影响。结果表明:聚苯胺(PANI)以球状物的形式均匀地包覆在GO表面;盐酸浓度超过0.5mol·L-1,反应诱导期明显缩短,复合材料的导电性显著提高。在聚合体系中加入GO可延长聚合反应诱导期,但随着GO用量的增加反应诱导期缩短。当盐酸浓度为0.5mol·L-1,GO与苯胺单体质量比超过2%时,制备的PANI/GO复合材料中GO形成导电通路,电导率较纯PANI提高一个数量级,达到1.4S·cm-1。  相似文献   

5.
超声辐照制备聚苯胺/碳纳米管复合微管   总被引:4,自引:0,他引:4  
利用超声空化产生的强烈粉碎、分散等作用,在实现碳纳米管(CNTs)纳米分散的同时通过化学氧化法聚合单体苯胺,制备了聚苯胺(PANI)包覆CNTs结构的复合微管。用苯胺浸润CNTs解决了CNTs难于分散在HCl溶液中的问题。通过调节单体苯胺和CNTs的用量比调控PANI/CNTs复合微管的管径。XPS测试表明CNTs不影响PANI的掺杂度,但有利于稳定PANI的醌环结构。CNTs的加入提高了PANI的电性能,CNTs含量为12.82%时,PANI/CNTs复合材料比纯PANI的电导率高9.5倍。  相似文献   

6.
利用静电纺丝技术制备聚氨酯纳米纤维,采用原位聚合法在纤维表面聚合导电聚合物聚苯胺,得到具有优良导电性能的PU/PANI复合纳米导电纤维。利用扫描电镜(SEM)和红外光谱(FTIR)表征了PU/PANI复合纳米纤维的微观结构和化学组成,结果证明在聚氨酯纳米纤维表面成功合成了聚苯胺,并观察到聚苯胺均匀地包覆在聚氨酯纳米纤维的表面,PU/PANI复合纳米纤维呈现明显的皮芯结构。通过导电性能测试发现,PU/PANI复合纳米纤维电导率可达到4.34×10-1S/cm,导电性能优良。制得的复合纳米纤维网络的电导率相比普通纤维复合材料大幅提高,有望应用于微电子、传感器和抗静电领域。  相似文献   

7.
用原位聚合法在凹凸棒土(ATP)的表面包覆上磷酸(H3PO4)掺杂的聚苯胺(PANI),合成了H3PO4-PANI/ATP纳米复合材料,研究了聚合时间、H3PO4掺杂量、过硫酸铵(APS)用量、聚合温度和苯胺投料量对复合材料体积电阻率的影响.结果表明:在聚合温度为20℃,苯胺投料量为30%,聚合时间为4h,n(An)∶n(APS)∶n(H3PO4)=1∶1∶5.81时, 复合材料体积电阻率可达到6Ω·cm.并通过XRD、FTIR和TG-DTA对该条件下制备的纳米复合材料进行了表征.  相似文献   

8.
以石墨烯和苯胺为主要原料,采用空心玻璃微球表面原位聚合法制备聚苯胺/还原石墨烯/二氧化硅(PANI/RGO/SiO2)复合中空微球。分别采用X射线衍射仪(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)和网络矢量分析仪对PANI/RGO/SiO2复合中空微球的结构、形貌、介电和吸波性能进行研究。结果表明:合成的聚苯胺完整包覆在SiO2空心玻璃微球表面,石墨烯呈半透明薄纱状覆盖在聚苯胺表面;PANI/RGO/SiO2复合中空微球的吸波性能比PANI/SiO2好,石墨烯能改善复合材料对电磁波的吸收性能,且随石墨烯质量分数的增加,复合中空微球的吸波能力增强;当石墨烯的质量分数为5%、吸波层厚度为4 mm时,样品在6.32 GHz处达到最强反射损耗为-34.06 dB。  相似文献   

9.
采用化学氧化聚合法以不同浓度的苯胺单体制备聚苯胺(PANI-1和PANI-2),采用相同方法在氮掺杂碳纳米管(NCNTs)悬浮液中制备聚苯胺/氮掺杂碳纳米管复合材料(PANI/NCNTs-1和PANI/NCNTs-2)。利用循环伏安法、恒电流充放电和电化学交流阻抗技术对合成材料的超级电容器性能进行研究分析。在0.2 A/g电流密度下进行恒电流充放电, PANI/NCNTs-1和PANI/NCNTs-2复合材料可以获得较高的比电容。同时, PANI/NCNTs复合材料也具有优异的倍率性能和充放电稳定性,这都表明该复合材料在电化学储能器件领域具有广阔的应用前景。  相似文献   

10.
利用原位聚合法制备纳米电磁复合材料聚苯胺包覆碳纳米管(MWNT)/Ni0.5Zn0.5Fe2O4.采用XRD、TEM、HRTEM、FTIR、TG-DSC和VSM等方法对复合材料进行表征,XRD结果表明,聚苯胺、碳纳米管和Ni0.5Zn0.5Fe2O4共存于复合材料;TEM结果表明,PAn包覆在MWNT/Ni0.5Zn0.5Fe2O4外表面,包覆厚度为15~30 nm;TG-DSC及磁性研究表明,复合材料的矫顽力为21 687.02 A/m,饱和磁化强度为2.27 T,是一种具有较好磁性能的软磁材料.  相似文献   

11.
采用化学氧化法制备聚苯胺 (PANI),并用机械共混法制备电学性能优良的(丙烯腈/丁二烯/苯乙烯) 共聚物(ABS)/PANI导电复合材料.研究了PANI含量、偶联剂、混合条件等因素对PANI分散性及导电复合材料电导率的影响,同时,利用扫描电镜(SEM)和红外光谱(FT-IR)等分析测试技术对复合材料的微观特征进行了分析.SZ-82数字式四探针测试电导率分析得出PANI在ABS中的逾渗阈值约为40%,混炼4次后消除团聚,相对于PANI添加20%的偶联剂导电效果最佳.  相似文献   

12.
聚苯胺/镍纳米复合材料原位复合与性能表征   总被引:6,自引:0,他引:6  
采用先合成导电聚苯胺,然后用多元醇原位液相还原的方法,合成了聚苯胺/镍纳米复合材料,纳米镍的含量约为19.22%(质量分数)。具有面心立方晶体结构,生成的纳米镍“镶嵌”在聚苯胺颗粒的表面,形成了类似“草莓”状的复合颗粒,复合颗粒的热稳定性有较明显提高。复合颗粒同时具有铁磁性和导电性,复合颗粒的饱和磁化强度最高可达到10.77Am2/kg,电导率为9.86×10-3S/cm。  相似文献   

13.
以氧化石墨烯(GO)与苯胺作为前驱物,在高温高压下一步水热反应,合成了聚苯胺/石墨烯(PANI/Gr)复合材料。利用紫外可见光谱、傅里叶变换红外光谱、扫描电子显微镜研究了PANI/Gr复合材料的结构和微观形貌,进一步利用电化学工作站探究了PANI/Gr复合材料的电化学性能。研究了水热反应时苯胺与GO的投料质量比对所得复合材料的结构与电化学性能的影响。循环伏安法和恒电流充放电测试结果表明由于聚苯胺与石墨烯的相互作用,复合材料的电容性能比单组分的聚苯胺和石墨烯要高。这说明通过GO与苯胺的一步水热反应成功制备了具有优良电容性能的PANI/Gr复合材料。  相似文献   

14.
采用过硫酸钠为氧化剂制备聚苯胺/金纳米复合材料,通过紫外-可见光谱、X-射线衍射及透射电子显微镜对形成的复合材料进行表征.结果发现,聚苯胺形成了纳米线结构,并且在表面均匀地分布了大量的金纳米粒子,但是形成的复合材料结晶度不高.  相似文献   

15.
为提高电介质材料的介电性能,采用原位聚合的方法制备了BT/PANI复合功能体,以其为功能相,制备了BT/PANI/PVDF三相复合材料.采用红外光谱法和X射线衍射法对BT/PANI复合功能体的结构进行了表征,采用扫描电子显微镜和阻抗分析仪对BT/PANI/PVDF三相复合材料的微观形貌和介电性能进行了表征.分析了BT/PANI/PVDF体系中的极化方式,并以此为基础,对介电性能随频率的变化规律进行了解释.结果表明:在BT/PANI/PVDF三相复合体系中,功能相BT/PANI被均匀包覆在聚合物基体中,得到了介电性能较好的BT/PANI/PVDF三相复合材料.  相似文献   

16.
采用化学法在氧化石墨烯(GO)表面垂直生长出聚苯胺(PANI)纳米线阵列。利用SEM、FT-IR、Raman对所制备的GO/PANI复合材料的形貌及结构进行表征。该复合材料的电化学电容性能通过循环伏安(CV)、交流阻抗(EIS)和恒流充放电进行表征。研究结果表明:在0.2A/g的电流密度下,GO/PANI电极首次充放电比电容可高达469F/g,高于纯PANI电极的452F/g,复合材料的电荷传递电阻为1Ω·cm2。同时,GO/PANI的循环稳定性及倍率特性得到极大的增强。  相似文献   

17.
RuO2/聚苯胺复合材料电极的制备及电化学性能表征   总被引:3,自引:1,他引:2  
以RuCl3·nH2O和苯胺为原料,采用原位聚合法制备了RuO2与聚苯胺(PANI)的纳米复合材料.运用SEM和XRD对样品进行了表征,通过循环伏安法测试了样品的电化学性能.结果表明:不同RuO2含量的复合材料电极的比容量由大到小顺序为3%、1%、10%、2%、7%、5%;RuO2含量为3%时,复合材料电极的比容量达到373.27 F/g,改用活性炭作辅助电极,比容量提高了近10%.  相似文献   

18.
以RuCl3·nH2O和苯胺为原料,采用原位聚合法制备了RuO2与聚苯胺(PANI)的纳米复合材料.运用SEM和XRD对样品进行了表征,通过循环伏安法测试了样品的电化学性能.结果表明不同RuO2含量的复合材料电极的比容量由大到小顺序为3%、1%、10%、2%、7%、5%;RuO2含量为3%时,复合材料电极的比容量达到373.27 F/g,改用活性炭作辅助电极,比容量提高了近10%.  相似文献   

19.
以煤为填料,聚苯胺为基体采用静置法合成了聚苯胺/煤纳米复合材料.将聚苯胺/煤复合材料作为防腐蚀填料加入环氧树脂中,涂于镁合金试样表面,固化后即得聚苯胺/煤/环氧树脂复合抗腐蚀涂层.采用红外光谱(FTIR)表征了聚苯胺/煤复合材料的化学结构,用扫描电子显微镜观察了其微观形貌,并用电化学工作站测试了其在3.5%NaCl溶液中的极化曲线和阻抗谱图.测试结果表明,聚苯胺/煤复合材料可明显改善镁合金的腐蚀性能,使镁合金的腐蚀速率下降3个数量级.试样的腐蚀性能随着聚苯胺/煤复合材料含量的增加大幅度提高,当聚苯胺/煤复合材料的含量达到20%时,涂层的腐蚀性能最佳,变化缓慢.腐蚀时间的延长使试样的腐蚀性能下降,涂层中聚苯胺/煤复合材料的含量为15%时,阻抗变化幅度最低.  相似文献   

20.
以RuCl3.nH2O为原料通过溶胶-水热法制得纳米RuO2粒子,然后在RuO2溶胶体系中通过常规的化学氧化法由苯胺氧化聚合制备纳米RuO2/聚苯胺复合材料,采用扫描电镜(SEM)和X-射线衍射(XRD)对其形貌和微观结构进行表征,并用循环伏安法研究了不同RuO2质量分数的复合材料电极的电化学性能。结果表明,RuO2质量分数为5%时,RuO2/聚苯胺复合材料形成致密的表面包覆型结构,聚苯胺电化学电容消失,复合材料电极电容很小。RuO2质量分数大于或小于5%时,RuO2粒子呈弥散状分布在聚苯胺中;RuO2质量分数为3%时,复合材料比电容达到极值374.6 F/g,这种复合材料具有很好的电化学特性,适于用作超级电容器电极。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号